BACILLUS THURINGIENSIS BACILLUS CEREUS

BACILLUS GENETIC STOCK CENTER CATALOG OF STRAINS SEVENTH EDITION VOLUME 2

Bacillus Genetic Stock Center Catalog of Strains, Seventh Edition, Part 2: Bacillus thuringiensis and Bacillus cereus

© 1999

Permission is given to copy this material or portions of it freely, provided that no alterations are made and that this copyright page is included.

Daniel R. Zeigler, Ph.D. The *Bacillus* Genetic Stock Center Department of Microbiology The Ohio State University 484 West Twelfth Avenue Columbus, Ohio 43210

Disclaimer: The information in this catalog is believed to be correct. Due to the dynamic nature of the scientific process and to normal human limitations in dealing with such a large amount of data, however, some undetected errors may persist. Users bear the responsibility of verifying all important data before making a significant investment of time or other physical or financial resources.

Cover: Scanning electron micrograph of an uncharacterized *B. thuringiensis* strain isolated on the Ohio State University campus. Spores and spherical crystals, covered with a mesh, are visible. Micrograph was digitized and converted to shadowed images with Macromedia Freehand[®] 8.0.

This material is based upon work supported by the National Science Foundation under Grant $86\pm\%$ (-\$&-. "Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author and do not necessarily reflect the views of the National Science Foundation.

TABLE OF CONTENTS

Table of Contents	1
Obtaining Materials from the Bacillus Genetic Stock Center	
What is the BGSC? What kinds of cultures are available from the BGSC? What you can do to help the BGSC How to order cultures Pricing information Important noticeplease read before ordering!	2 2 3 3 4
Bacillus thuringiensis Strains	
Bacillus thuringiensis strains indexed by BGSC accession number Bacillus thuringiensis strains indexed by original code Bacillus thuringiensis strains indexed by serotype Bacillus thuringiensis strains indexed by subspecies	5 16 17 18
Escherichia coli Clones of Bacillus thuringiensis cry Genes	
Escherichia coli strains indexed by BGSC accession number Escherichia coli strains indexed by gene name	19 19
Bacillus cereus Strains and Genomic Library	
Bacillus cereus strains indexed by BGSC accession number and original code Bacillus cereus genomic library	20 20
Bacteriophages of Bacillus cereus and Bacillus thuringiensis	
Bacteriophages of <i>B. thuringiensis</i> and <i>B. cereus</i> indexed by BGSC number Bacteriophages indexed by original code	21 22
Selected Cloning Vectors and Hosts	
Bacillus thuringiensis plasmid-cured hosts Other Bacillus hosts Gram positive plasmids Bacillus-E. coli shuttle vectors Antibiotic resistant cassettes	23 23 23 24 24
Technical Material Relating to Bacillus thuringiensis and Bacillus cereus	
Growth and sporulation media for <i>Bacillus thuringiensis</i> and <i>Bacillus cereus</i> Electroporation of <i>Bacillus thuringiensis</i> and <i>Bacillus cereus</i> Generalized transduction with CP-54Ber Conjugation-like mating with <i>Bacillus thuringiensis</i> Plasmid profiles <i>Bacillus thuringiensis</i> and <i>Bacillus cereus</i> Purification of <i>Bacillus thuringiensis</i> crystals Detection of <i>cry</i> and <i>cyt</i> genes by PCR Nomenclature of Cry and Cyt proteins Pesticidal activity of Cry and Cyt proteins The review literature for <i>Bacillus thuringiensis</i> <i>Bacillus cereus</i> and <i>Bacillus thuringiensis</i> -the species question	25 28 31 32 33 34 36 39 48 52 54
General Index of Strains, Phage, and Plasmids	55

General Index of Strains, Phage, and Plasmids

OBTAINING MATERIALS FROM THE BGSC

What is the Bacillus Genetic Stock Center?

The primary mission of the *Bacillus* Genetic Stock Center (BGSC) is to maintain genetically characterized strains, cloning vectors, and bacteriophage for the genus *Bacillus* and related organisms and to distribute these materials without prejudice to qualified scientists and educators throughout the world. Since 1978, the National Science Foundation has funded the activities of the BGSC. The Department of Biochemistry in the College of Biological Sciences at the Ohio State University provides facilities and administrative support. The Director of the BGSC, Dr. Daniel R. Zeigler, is assisted by a technician and a data entry specialist.

What kinds of cultures are available from the BGSC?

This catalog lists only the *Bacillus thuringiensis* and *Bacillus cereus* cultures available from the BGSC, as well as a selection of *Escherichia coli* plasmids and clones that might be of interest to scientists working with these species. The BGSC maintains and distributes a wide range of other strains, however. Included in our collection as of July 2012 (and described in other existing and planned catalogs) are:

- The nomenclatural type strains for 34 species;
- 1291 mutant or plasmid bearing strains derived from *Bacillus subtilis* 168, including a collection of 115 genetically characterized sporulation mutants;
- 158 strains of round spore formers, comprised of 136 strains of *B. sphaericus*, 17 of *B. fusiformis*, and five of *Rommeliibacillus pycnus*;
- 239 genetically characterized wild-type, mutant, and plasmid-bearing strains of *B. megaterium*;
- 96 lytic or lysogenic *Bacillus* bacteriophages;
- 42 wild-type and mutant strains from the thermophilic genus Geobacillus
- 41 wild-type, mutant, and lysogenic strains of *Bacillus licheniformis*;
- 55 other wild-type, mutant, and plasmid-bearing *B. subtilis* isolates, including 13 from *B. subtilis* subsp. *spizizenii* and 42 from other *B. subtilis* backgrounds;
- 102 wild-type strains from the *Bacillus cereus* group, also including *B. mycoides* and *B. weihenstephanensis*;
- 18 wild-type isolates from the genus *Brevibacillus*, including *B. brevis*, *B. borstelensis*, *B. centrosporus*, and *B. laterosporus*;
- 18 wild-type and mutant strains from *B. amyloliquefaciens*;
- 30 wild-type isolates from the genus Paenibacillus, including P. alvei, P. dendritiformus, P. macerans, P. polymyxa, P. popilliae, P. thiaminolyticus, and P. vorticalis;
- 42 isolates from 22 other related species, including Aneurinibacillus aneurinilyticus, A. migulanus, B. atrophaeus, B. badius, B. carboniphilus, B. circulans, B. clausii, B. coagulans, B. firmus, B. lentus, B. mojavensis, 'B. natto,' B. oleronius, B. pumilus, B. shackletonii, Marinibacillus marinus, Sporosarcina ureae, and Virgibacillus marismortui
- 240 Escherichia coli strains bearing shuttle plasmids or cloned Bacillus DNA;
- Warehoused *Bacillus* strain collections of Joshua Lederberg, Eugene Nester, Bernard Reilly, Patiricia Vary, Allan Yousten, Stanley Zahler, and the late Ernst W. Freese.

Please note that the BGSC has never carried B. anthracis or products derived from it.

Please inquire about any of these strains that might be of interest to you.

What you can do to help the BGSC

Our NSF grant partially subsidizes many services we offer. User fees are vitally important if we are to close the funding gap and continue operations. We greatly appreciate your understanding! Additionally, we would be grateful for the following kinds of help:

- Strain contributions: Although we have obtained a few cultures from other strain repositories, the vast majority of our holdings were contributed by individual researchers. Please take a moment to look over our collection and consider: are there strains, vectors, phage, or clones that you have developed or acquired that we do not have? Would these materials be of some potential use to others in the research community? If so, please take the time to deposit the material in the BGSC. There is no charge whatsoever to you. Generally, all we would require would be a culture (or lysate) with appropriate reprints or other helpful information. Please contact us (see below) if you have any questions.
- Financial Contributions: The BGSC requires on corporate strain sales and contributions to purchase equipment and undertake special projects not covered by the NSF grant. The Ohio State University Development Fund has a separate account for the BGSC. Contributions are tax deductible to the full extent of the law. Please contact us if you wish to contribute.

How to order cultures

There are several ways to place orders with or request information from the BGSC:

- E-mail: <u>zeigler.1@osu.edu</u>
- Internet: <u>www.bgsc.org</u>
- Phone: (+1) 614-292-5550
- FAX: (+1) 614-292-3206
- Mail: Daniel R. Zeigler, Ph.D. Department of Biochemistry The Ohio State University 484 West Twelfth Avenue Columbus, OH 43210 USA

All users will be invoiced for strain, plasmid, or phage requests. Payment must be in US dollars via check, bank transfer, or procurement card (Visa, MasterCard, and American Express accepted). Orders can be placed via any of the five methods above with an institutional purchase order. Credit card orders should be made via phone or fax.

Pricing information

- Academic, Government, and Non-Profit Users—Not-for-profit users are requested to pay a \$195 yearly subscription fee. This subscription entitles the user to receive up to 20 strains over a twelve-month period. Alternatively, individual strains may be purchased for \$35 each. Users without research funds may request a fee-waiver for a particular order.
- For-profit Corporate Users Users may purchase cultures as needed for a \$135 per item charge. This charge includes shipment by UPS at no additional cost for domestic users. UPS shipping is included at no cost on international orders for two or more strains, while orders for single strains will include a surcharge for shipping. Alternatively, users may pay a \$1950 fee, entitling them to up to 50 cultures within the next twelve calendar months at no further cost. Express delivery service is provided at no extra charge (maximum of five express deliveries per year on international shipments).

Important Notice

Please read this notice before ordering materials from this catalog!

THE MATERIALS OFFERED IN THIS CATALOG MAY BE OWNED BY PERSONS OR FIRMS OTHER THAN THE OHIO STATE UNIVERSITY OR THE *BACILLUS* GENETIC STOCK CENTER. USE OF THE MATERIALS FOR ANY PUPOSE OTHER THAN RESEARCH MAY CONSTITUTE A VIOLATION OF THE RIGHTS OF THESE PARTIES AND MAY SUBJCT THE RECIPIENT TO LEGAL LIABILITY. IT IS THE RESPONSIBILITY OF THE USER (NOT EMPLOYEES OF THE *BACILLUS* GENETIC STOCK CENTER) TO DETERMINE THE PROPRIETARY STATUS OF ANY OF THESE MATERIALS.

Upon acceptance and use of any Material the Recipient agrees to the following conditions:

- (1) <u>All warranties, express or implied, in respect of Materials, including warranties of</u> <u>merchantability and of fitness for any particular purpose, are disclaimed by The Ohio State</u> <u>University (OSU).</u>
- (2) The Materials are provided for research use only and are not to be used for commercial purposes which include, but are not limited to, the sale, lease, license, or other transfer of the Materials or modifications to a for-profit organization without the express permission of the owners of the Materials.
- (3) The furnishing of Materials to Recipient shall not constitute any grant or license to recipient under any legal rights now or later held by OSU or others. Recipient acknowledges that Materials are experimental products of research that may not have been fully characterized, and will accept materials as is and entirely at its own risk and without exculpatory reliance on any information or representation/s that may be, or have been, furnished or made by or on behalf of OSU, including without limitation information or representation/s as to
 - (i) the composition, characterization, purity, stability, safety or utility of Materials,
 - (ii) the applicability, efficacy or safety of any method/s of preparing, handling, storing, using or disposing of Materials, or
 - (iii) the freedom from claims by others of intellectual or other property rights in Materials or in any such methods. The provision of the Material to Recipient shall not alter any pre-existing right to the Materials.

BACILLUS THURINGIENSIS STRAINS BY BGSC CODE

BGSC No.	Original Code	Reference	Description
4A1	NRRL-B4039	Bulla LA, donor; Berliner E (1915) Z f Angew Entomol 2:29	Wild type isolate
4A2	HD24 (CCEB206)	Dulmage HT, donor; Lysenko O, source	Wild type isolate
4A3	HD2	Dulmage HT, donor; Heimpel AM, source	"Bt <i>berliner</i> " Isolated in Canada from <i>Ephestia kühniella</i> ; antisera standard
4A4	HD120 (HDB-2)	Dulmage HT, donor; Burges HD, source	Isolated in England from Ephestia elutella
4A5	HD14 (CCEB457)	Dulmage HT, donor; Lysenko O, source	Isolated in Czechoslovakia
4A6	1715	(unpublished)	Wild type isolate
4A7	Bt1	Sebesta K, Hórska K (1970) Biochim Biophys Acta 209:357	Cry Exo⁺ Spo⁺
4A8	Bt131	Landen R. et al. (1981) J Gen Microbiol 123:49	strA2
4A9	Bt1627	Heierson A, et al. (1983) Mol Gen Genet 192:118	asp-1 purA1

Serotype 1-Serovar. thuringiensis

Serotype 2-Serovar. finitimus

BGSC No.	Original Code	Reference	Description
4B1	HD19 (CCEB460)	Dulmage HT, donor; Lysenko O, source	Wild type isolate
4B2	HD3	Dulmage HT, donor; Heimpel AM, source	Isolated in the US from <i>Malacosoma</i> distria; antisera standard

Serotype 3a, 3c-Serovar. alesti

BGSC No.	Original Code	Reference	Description
4C1	HD16	Dulmage HT, donor; Lysenko O, source	Isolated in Czechoslovakia from
	(CCEB463)		Bombyx mori
4C2	HD72	Dulmage HT, donor; Vago C, source	Isolated in France
4C3	HD4 (B. alesti	Dulmage HT, donor; Toumanoff C, Vago C (1951)	Isolated in France from Bombyx
	143)	C R Acad Sci 233:1504	mori; antisera standard

Serotype 3a, 3b, 3c-Serovar. kurstaki

BGSC No.	Original Code	Reference	Description
4D1	HD1	Dulmage HT (1970) J Invertebr Path 15:232	Isolated in US
4D2	2	Fettig P (source)	Wild type isolate
4D3	3	Fettig P (source)	Wild type isolate
4D4	HD73	Kurstak E (unpublished; see J Invertebr Pathol	Isolated in France from Ephestia
	(AP77BX17)	15:139)	kühniella
4D5	HD164	Dulmage HT (unpublished)	Wild type isolate
4D6	HD1	Yousten AA, donor; Dulmage HT (1970) J	Wild type isolate
		Invertebr Path 15:232	
4D7	HD(CRY-1)	Yousten AA (unpublished)	Cry
4D8	HD1(CRY-6)	Yousten AA (unpublished)	Cry ⁻
4D9	HD1(CRY-7)	Yousten AA (unpublished)	Cry
4D10	HD1(CRY-8)	Yousten AA (unpublished)	Cry; Oligosporogenous
4D11	CRY(-)B	Stahley DP, et al. (1978) Bioch Biophys Res Comm	Cry; no reaction with known Bt
		84:581	flagellar antisera
4D12	HD263	Dulmage HT, donor; Burges HD, source	Isolated in England from Ephestia
	(PIL-89)		cautella

4D14	HD231	Dulmage HT	Wild type isolate
4D15	HD232	Dulmage HT	Wild type isolate
4D16	HD243	Dulmage HT	Wild type isolate
4D17	HD88	Dulmage HT (1971) J Invertebr Path 18:353	Isolated in US from Trichoplusia ni
4D18	HD89	Dulmage HT, donor; Correa, source	Isolated in US from Trichoplusia ni
4D19	HD270 (PIL-	Dulmage HT, donor; Burges HD, source	Isolated in England from Carpophilus
	96)		hemipterus
4D20	HD1 (4432)	Fischer H-M, et al. (1984) Arch Microbiol 139:213	Wild type isolate
4D21	4432(pC194)	Fischer H-M, et al. (1984) Arch Microbiol 139:213	(pC194) Cm
4D22	HD-73-20	González J. et al. (1982) Proc Natl Acad Sci	Crystal minus derivative of HD-73;
		79:6951	cured of 75, 11, and 10 kb plasmids

Serotype 4a, 4b-Serovar. sotto/dendrolimus

BGSC No.	Original Code	Reference	Description
4E1	HD106 (2-124)	Dubois N, donor; Heimpel, source	Isolated in US
4E2	HD7	Talalev EV (1956) Mikrobiologija 25:99	Isolated in France from <i>Dendrolimus</i> sibericus; biotype dendrolimus standard
4E3	sotto	see J Bacteriol (1983) 154:419	Wild type isolate
4E4	Sotto G (HD6) (4-1)	Angus T (unpublished) (obtained through deBarjac)	Isolated in Canada
4E5	4E3 Cry-	Dean DH, unpublished	Crystal minus derivative of 4E3

Serotype 4a, 4c-Serovar. kenyae

BGSC No.	Original Code	Reference	Description
4F1	HD136 (HDB-23)	Dulmage HT, donor; Burges HD, source	Isolated in England from Corcyra cephalonica
4F2	HD278 (PIL-139)	Burges HD, source	Isolated in Kenya from Cadra cautella
4F3	HD293	Dulmage HT, donor; Allen J, source	Isolated in US from Cadra cautella
4F4	HD560(7304)	Tsai & Sha (unpublished)	Wild type isolate

Serotype 5a, 5b–Serovar. galleriae

BGSC No.	Original Code	Reference	Description
4G1	HD8	Isakova NP (1958) Dokl Akad Sci Naul Selsk 23:26	Isolated in the USSR from Gallaeria mellonella; antisera standard
4G2	HD210	Dulmage HT, donor; Heimpel AM, source	Isolated in US
4G3	HD161	Dulmage HT, donor; de Barjac H, source	Wild type isolate
4G4	HD305 (HDB-34)	Dulmage HT, donor; Burges HD, source	Isolated in England from Plodia interpunctella
4G5	HD29	Dulmage HT, donor; Lysenko O, source	Isolated in Czechoslovakia from Dendrolimus sibericus
4G6	HD168	Dulmage HT, donor	Reisolation of HD8

Serotype 5a, 5c-Serovar. canadensis

BGSC No.	Original Code	Reference	Description
4H1	HD30 (Dch-T) (CCEB566)	Dulmage HT, donor; Schvetsova O, source	Isolated in Czechoslovakia from Notodonta aniera
4H2	HD224	de Barjac H, Bonnefoi A (1972) J Invertebr Path 20:212	Isolated in Canada; antisera standard

Serotype 6-Serovar. entomocidus/subtoxicus

BGSC No.	Original Code	Reference	Description
411	HD10	Heimpel AM, Angus TA (1958) Can J Microbiol	Isolated in Canada from Plodia
		4:531	interpunctella; biotype subtoxicus
412	HD198	Dulmage HT, donor; Hunter K, source	Isolated in US from Cadra figulilela
413	HD320	Dulmage HT, donor; Krywienczyk J, source	Isolated in US
414	HD9	Dulmage HT, donor; Heimpel AM, Angus TA (1958)	Isolated in Canada from Aphonia
		Can J Microbiol 4:531	gularis; antisera standard
415	HD109	Dulmage HT, donor; Heimpel AM source	Isolated in Canada; biotype
			subtoxicus

Serotype 7-Serovar. aizawai/pacificus

BGSC No.	Original Code	Reference	Description
4J1	HD112	Dulmage HT, donor; Hall IM, source; see J	Isolated in Japan from Heliothis
	(DD-742)	Invertebr Path 9:364	assulta
4J2	HD137 (HDB-24)	Dulmage HT, donor; Burges HD, source	Isolated in England from Plodia interpunctella
4J3	HD133 (HDB-20)	Dulmage HT, donor; Burges HD, source	Isolated in England from Plodia interpunctella
4J4	HD11	Dulmage HT, donor; Aizawa K, source	Isolated in Japan from <i>Heliothis</i> assulta; antisera standard
4J5	HD137 (HDB-24)	Dulmage HT, donor; Burges HD, source	Isolated in England from Plodia interpunctella

Serotype 8a, 8b-Serovar. morrisoni

BGSC No.	Original Code	Reference	Description
4K1	HD12	Dulmage HT, donor; Norris JR, source	Isolated in the US; antisera standard
4K3	HD518	Dulmage HT, donor; DeLucca, source	Isolated in the US
4AA1	tenebrionis	McPherson S A, et al. (1989) Bio/technology 6: 61	Biovar. tenebrionis
4AB1	san diego	Herrnstadt C, et al. (1987) Gene 57:37-46	Biovar. sandiego

Serotype 9-Serovar. tolworthi

BGSC No.	Original Code	Reference	Description
4L1	HD125 (HDB-8)	Dulmage HT, donor; Burges HD, source	Isolated in England from Cadra cautella
4L2	HD301 (HDB-28)	Dulmage HT, donor; Burges HD, source	Isolated in England from <i>Cadra</i> cautella
4L3	HD537	Dulmage HT, donor; deBarjac H, source	Wild type isolate

Serotype 10a, 10b-Serovar. darmstadiensis

BGSC No.	Original Code	Reference	Description
4M1	HD146 (103)	Krieg A, et al. (1968) J Invertebr Path 10:428	Isolated in England
4M2	HD199 (102)	Krieg A, et al. (1968) J Invertebr Path 10:428	Isolated in England
4M3	HD146 (103)	Krieg A, et al. (1968) J Invertebr Path 10:428	Isolated in England

Serotype 11a, 11b-Serovar. toumanoffi

BGSC No.	Original Code	Reference	Description
4N1	HD201	Toumanoff C (1956) Ann Inst Pasteur 90:660	Isolated in England from Galleria
	(B-30-2)		mellonella; antisera standard

Serotype 12-Serovar. thompsoni

BGSC No.	Original Code	Reference	Description
401	HD542	deBarjac H, source	Wild type isolate

Serotype 13-Serovar. pakistani

BGSC No.	Original Code	Reference	Description
4P1	HD395	Shaikh, source	Isolated in Pakistan from Cydia
			pomonella; antisera standard

Serotype 14-Serovar. israelensis

BGSC No.	Original Code	Reference	Description
4Q1	HD567	Goldberg LJ, Margalit J (1977) Mosquito News	Isolated in Israel from Culicidae
	(ONR60A)	37:55	larvae; antisera standard
4Q2	HD500	Goldberg LJ, Margalit J (1977) Mosquito News 37:55	Isolated in Israel from <i>Culicidae</i> larvae
4Q3	IPS 70	Goldberg LJ, Margalit J (1977) Mosquito News 37:55	Isolated in Israel from <i>Culicidae</i> larvae
4Q4	WHO2013-9	Nosec I (unpublished) (see: J Am Mosq Cont Assc 1:1)	Wild type isolate
4Q5	4Q2-72	Clark BD (1987) Ph.D. Thesis (Ohio St. Univ.)	Plasmid cured mutant; bears only 72 mDal plasmid
4Q6	4Q2-72 str azi	(unpublished)	Azi ^r Str ^r ; bears only 72 mDal plasmid
4Q7	4Q2-81	Clark BD (1987) Ph.D. Thesis (Ohio St. Univ)	Plasmidless mutant
4Q8	4Q2-81 str	(unpublished)	Str ^r ; Plasmidless mutant

Serotype 15–Serovar. dakota

BGSC No.	Original Code	Reference	Description
4R1	Oats 43	DeLucca AJ, et al. (1979) J Invertebr Path 34:323	Wild type isolate

Serotype 16-Serovar. indiana

BGSC No.	Original Code	Reference	Description
4S2	HD521	Dulmage HT, donor; deLucca, source	Wild type isolate
4S3	HD516	Dulmage HT, donor; deBarjac H, source	Wild type isolate

Serovar. wuhanensis (no flagellar antigen)

BGSC No.	Original Code	Reference	Description
4T1	HD525 (140)	Hubei Institute Microbiol (1976) Acta Microbiol Sin 16:12	no flagellar antigen

Serotype 11a, 11c-Serovar. kyushuensis

BGSC No.	Original Code	Reference	Description
4U1	HD541 (74-F-6-18)	Ohba M, Aizawa K (1979) J Invertebr Path 33:387	Isolated in Japan from <i>B. mori</i> colony; antisera standard

Serotype 17–Serovar. tohokuensis

BGSC No.	Original Code	Reference	Description
4V1	78-FS-29-17	Ohba M, et al. (1981) J Invertebr Path 38:307	Isolated in Japan from B. mori
			colony; antisera standard

Serotype 18a, 18b-Serovar. kumamtoensis

BGSC No.	Original Code	Reference	Description
4W1	HD867 (3-71)	Ohba M, et al. (1981 J Invertebr Path 38:184	Isolated in Japan from <i>B. mori</i> colony; antisera standard

Serotype 21–Serovar. colmeri

BGSC No.	Original Code	Reference	Description
4X1	IS720	DeLucca AJ, et al. (1984) J Invertebr Path 43:437	Wild type isolate

Serotype 19-Serovar. tochigiensis

BGSC No.	Original Code	Reference	Description
4Y1	HD868 (117-72)	Ohba M, et al. (1981) J Invertebr Path 38:184	Isolated in Japan from soil; antisera standard

Serotype 8a, 8c-Serovar. ostriniae

BGSC No.	Original Code	Reference	Description
4Z1	HD501	Gaixin R, et al. (1975) Acta Microbiol Sin 19:117	Isolated in China

Serotype 27-Serovar. mexicanensis

BGSC No.	Original Code	Reference	Description
4AC1	GM54	Rodriguez-Padilla and Galan-Wang (1988)	Isolated in Mexico; antisera standard

Serotype 31-Serovar. toguchini

BGSC No.	Original Code	Reference	Description
4AD1	toguchini	Hodirev VP (1990) Izvestiia Akademii Nauk SSSR. SerIIA Biologicheskaia. 5:789-91	Isolated in USSR from soil; antisera standard

Serotype 29-Serovar. amagiensis

BGSC No.	Original Code	Reference	Description
4AE1	84 F 58.20	Ohba M, source; see Saitoh H, et al. (1996) Microbiol Res 151: 263-71	Isolated in Japan from <i>Bombyx mori</i> litter; antisera standard

BGSC No.	Original Code	Reference	Description
4AF1	273B	Jacquemard, source	isolated from soil samples collected in Cameroon; produces cuboidal crystals with major proteins of 53 and 35 kDa; antisera standard

Serotype 26–Serovar. silo

BGSC No.	Original Code	Reference	Description
4AG1	SLM5.A	Lecadet M, source	Isolated from grain silo in France; antisera standard

Serotype 34-Servoar. konkukian

BGSC No.	Original Code	Reference	Description
4AH1	HL47	Lee HH (1994) J Invertebr Pathol 63:217	Isolated in South Korea; antisera standard; produces bipyrimidal crystals; toxic to <i>Bombyx mori</i> but not <i>Culex pipiens</i>

Serotype 28a, 28b–Serovar. monterrey

BGSC No.	Original Code	Reference	Description
4AJ1	GM33	Rodriquez-Padilla, source	Isolated in Mexico; antisera standard

Serotype 33–Serovar. *leesis*

BGSC No.	Original Code	Reference	Description
4AK1	HL51	Lee HH (1994) J Invertebr Pathol 63:217	Isolated in South Korea; antisera standard; produces cuboidal crystals; toxic to <i>Bombyx mori</i> but not <i>Culex pipiens</i>

Serotype 25-Serovar. coreanensis

BGSC No.	Original Code	Reference	Description
4AL1	HL1	Lee HH (1994) J Invertebr Pathol 63:217	Isolated in South Korea; antisera standard; produces irregular crystals; not toxic to <i>Bombyx mori</i> or <i>Culex pipiens</i>

Serotype 20a, 20b–Serovar yunnanensis

BGSC No.	Original Code	Reference	Description
4AM1	T20 001	Yu W, Fang Q, Ping X, You W (1979)	Isolated in China from <i>Prodenia</i> <i>litura</i> ; antisera standard

Serotype 22–Serovar. shanongiensis

BGSC No.	Original Code	Reference	Description
4AN1	T22 001	Ying, Jie, Xichang (1986)	Isolated in China; antisera standard

Serotype 3a, 3d-Serovar. sumiyoshiensis

BGSC No.	Original Code	Reference	Description
4AO1	T03B001	Ohba M, Aizawa (1989)	Isolated in Japan; antisera standard

Serotype 3a, 3d, 3e-Serovar. fukuokaensis

BGSC No.	Original Code	Reference	Description
4AP1	T03C001	Ohba M, Aizawa (1989)	Isolated in Japan; antisera standard

Serotype 35-Serovar. seoulensis

BGSC No.	Original Code	Reference	Description
4AQ1	T35 001	Shim JC, unpublished	Isolated in South Korea from soil; antisera standard

Serotype 42–Serovar. jinghongiensis

BGSC No.	Original Code	Reference	Description
4AR1	T42 001	Rong SL, unpublished	Isolated in China from soil; antisera standard

Serotype 38-Serovar. oswaldocruzi

BGSC No.	Original Code	Reference	Description
4AS1	T38 001	Rabinovitch L, unpublished	Isolated in Brasil from black pepper
			powder; antisera standard

Serotype 23-Serovar. japonensis

BGSC No.	Original Code	Reference	Description
4AT1	T23 001	Ohba M, Aizaawa (1986)	Isolated in Japan; antisera standard

Serotype 44-Serovar. higo

BGSC No.	Original Code	Reference	Description
4AU1	T44 001	Ohba M, unpublished	Isolated in Japan from <i>Bombyx mori</i> litter; antisera standard

Serotype 36-Serovar. malayensis

BGSC No.	Original Code	Reference	Description
4AV1	T36 001	Ho TM, unpublished	Isolated in Malaysia; antisera standard

Serotype 37–Serovar. and alousiensis

BGSC No.	Original Code	Reference	Description
4AW1	T37 001	Santiago-Alvarez C, unpublished	Isolated in Spain; antisera standard

Serotype 24a, 24c–Serovar. novosibirsk

BGSC No.	Original Code	Reference	Description
4AX1	T24A 001	Burtseva L, Kalmikowa G (unpublished)	Isolated in the USSR from soil; antisera standard

Serotype 39–Serovar. brasilensis

BGSC No.	Original Code	Reference	Description
4AY1	T39 001	Rabionovitch L, unpublished	Isolated in Brazil from black pepper powder; antisera standard

Serotype 8b, 8d–Serovar. *nigeriensis*

BGSC No.	Original Code	Reference	Description
4AZ1	T08B 001	Weiser J, Prasertphon (1984)	Isolated in Czechoslovakia; antisera standard

Serotype 20a, 20c-Serovar. pondicheriensis

BGSC No.	Original Code	Reference	Description
4BA1	T20A 001	Rajagopalan PK	Isolated in India from soil; antisera
			standard

Serotype 41-Serovar. sooncheon

BGSC No.	Original Code	Reference	Description
4BB1	T41 001	Lee HH (unpublished)	Isolated in South Korea; antisera
			standard

Serotype 43-Serovar. guiyangiensis

BGSC No.	Original Code	Reference	Description
4BC1	T43 001	Rong SL, unpublished	Isolated in China from soil; antisera
			standard

Serotype 40-Serovar. huazhongensis

BGSC No.	Original Code	Reference	Description
4BD1	T40 001	Yu Z, unpublished	Isolated in China; antisera standard

Serotype 24a, 24b–Serovar. neoleonensis

BGSC No.	Original Code	Reference	Description
4BE1	T24 001	Rodriguez-Padilla, et al. (1988)	Isolated in Mexico; antisera standard

Serotype 10a, 10c-Serovar. Iondrina

BGSC No.	Original Code	Reference	Description
4BF1	T10A 001	Aramtes O, unpublished	Isolated in Germany; antisera standard

Serotype 45–Serovar. *roskildiensis*

BGSC No.	Original Code	Reference	Description
4BG1	T45 001	Hinrinschen & Hansen, unpublished	Isolated in Denmark from ivy leaves; antisera standard

Serotype 46-Serovar. chanpaisis

BGSC No.	Original Code	Reference	Description
4BH1	JC 51	IEBC, donor; Cangpaisan J, source	Isolated in Thailand from rice paddy

Serotype 47–Serovar. wratislaviensis

BGSC No.	Original Code	Reference	Description
4BJ1	PO 12	IEBC, donor; Lonc E, source	Isolated in Poland from soil

Serotype 48-Serovar. balearica

BGSC No.	Original Code	Reference	Description
4BK1	PM9	IEBC, donor; Caballero P, source	Isolated in Spain from soil

Serotype 49–Serovar. muju

BGSC No.	Original Code	Reference	Description
4BL1	A39	IEBC, donor; Campos Dias S, source	Isolated in Argentina

Serotype 50-Serovar. navarrensis

BGSC No.	Original Code	Reference	Description
4BM1	NA69	IEBC, donor; Caballero P, source	Isolated in Spain from soil

Serotype 51–Serovar. xiaguangiensis

BGSC No.	Original Code	Reference	Description
4BN1	3397	IEBC, donor; Jianping Yan, source	Isolated in China from beans

Serotype 52-Serovar. kim

BGSC No.	Original Code	Reference	Description
4BP1	HL 175	IEBC, donor; Kim S, source	Isolated in Korea from sesame field

Serotype 53–Serovar. *asturiensis*

BGSC No.	Original Code	Reference	Description
4BQ1	EA 34594	IEBC, donor; Santiago-Alvarez C, source	Isolated in Spain from soil

Serotype 54-Serovar. poloniensis

BGSC No.	Original Code	Reference	Description
4BR1	Pbt 23	IEBC, donor; Damgaard P, source	Isolated in Denmark from Lymantria
			monacha larvae

Serotype 55–Serovar. palmanyolensis

BGSC No.	Original Code	Reference	Description
4BS1	EA 40694	IEBC, donor; Santiago-Alvarez C, source	Isolated in Spain from soil

Serotype 56-Serovar. rongseni

BGSC No.	Original Code	Reference	Description
4BT1	Scg04-02	IEBC, donor; Li R, source	Isolated in China from red soil

Serotype 57-Serovar. pirenaica

BGSC No.	Original Code	Reference	Description
4BU1	NA210	IEBC, donor; Caballero P, source	Isolated in Spain

Serotype 58–Serovar. argentinensis

BGSC No.	Original Code	Reference	Description
4BV1	A20	IEBC, donor; Campos Dias S, source	Isolated in Argentina

Serotype 59-Serovar. iberica

BGSC No.	Original Code	Reference	Description
4BW1	L60	IEBC, donor; Caballero P, source	Isolated in Spain

Serotype 60—Serovar. *pingluonsis*

BGSC No.	Original Code	Reference	Description
4BX1	NXP15-04	IEBC, donor; Li R, source	Isolated in China from sandy soil

Serotype 61–Serovar. sylvestriensis

BGSC No.	Original Code	Reference	Description
4BY1	Pbt 53	IEBC, donor; Damgaard P, source	Isloated in Denmark from Scotch
			pine

Serotype 62-Serovar. zhaodongensis

BGSC No.	Original Code	Reference	Description
4BZ1	HZ39-04	IEBC, donor; Li R, source	Isolated in China from black soil

Serotype 18a, 18c-Serovar. yosoo

BGSC No.	Original Code	Reference	Description
4CA1	HL94	IEBC, donor; Lee HH, source	Isolated in South Korea

Serotype 64–Serovar. azorensis

BGSC No.	Original Code	Reference	Description
4CB1	EA11996	IEBC, donor; Santiago-Alvarez C, source	Isolated in Azores from soil

Serotype 65-Serovar. pulsiensis

BGSC No.	Original Code	Reference	Description
4CC1	NARC Bt17	IEBC, donor; Khalique A., source	Isolated in Pakistan from grain field

Serotype 66–Serovar. graciosensis

BGSC No.	Original Code	Reference	Description
4CD1	EA15196	IEBC, donor; Santiago-Alvarez C, source	Isolated in Azores from soil

Serotype 67–Serovar. vazensis

BGSC No.	Original Code	Reference	Description
4CE1	EA14696	IEBC, donor; Santiago-Alvarez C, source	Isolated in Azores from soil

Serotype 28a, 28c-Serovar. jegathesan

BGSC No.	Original Code	Reference	Description
4CF1	367	IEBC, donor; Lee HL, source	Isolated in Malaysia

B. THURINGIENSIS STRAINS BY ORIGINAL CODE

Original Code	BGSC	Original Code	BGSC	Original Code	BGSC
102	4M2	HD11	4J4	HDB-20	4J3
103	4M1	HD12	4K1	HDB-23	4F1
117-72	4Y1	HD14	4A5	HDB-24	4J2
140	4T1	HD16	4C1	HDB-24	4J5
143	4C3	HD19	4B1	HDB-28	4L2
1715	4A6	HD24	4A2	HDB-34	4G4
2	4D2	HD29	4G5	HL1	4AL1
2-124	4E1	HD30	4H1	HL47	4AH1
273B	4AF1	HD72	4C2	HL51	4AK1
3	4D3	HD73	4D4	HL94	4CA1
367	4CF1	HD88	4D17	HL175	4BP1
3397	4BN1	HD89	4D18	HZ39-04	4BZ1
3-71	4W1	HD106	4E1	IPS 70	4Q3
4432	4D20	HD109	415	IS720	4X1
4432(pC194)	4D21	HD112	4J1	JC 51	4BH1
4Q2-72	4Q5	HD120	4A4	L60	4BW1
4Q2-72 str azi	4Q6	HD125	4L1	NA69	4BM1
4Q2-81	4Q7	HD133	4J3	NA210	4BU1
4Q2-81 str	4Q8	HD136	4F1	NARC Bt17	4CC1
7304	4F4	HD137	4J2	NRRL-B4039	4A1
74-F-6-18	4U1	HD137	4J5	NXP15-04	4BX1
78-FS-29-17	4V1	HD146	4M1	Oats 43	4R1
84 F 58.20	4AE1	HD146	4M3	ONR60A	4Q1
A20	4BV1	HD161	4G3	Pbt 23	4BR1
A39	4BL1	HD164	4D5	Pbt 53	4BY1
AP77BX17	4D4	HD168	4G6	PIL-89	4D12
B-30-2	4N1	HD198	412	PIL-96	4D19
Bt1	4A7	HD199	4M2	PIL-139	4F2
Bt131	4A8	HD201	4N1	PM9	4BK1
Bt1627	4A9	HD201	4N1	PO 12	4BJ1
CCEB206	4A2	HD210	4G2	san diego	4AB1
CCEB457	4A5	HD224	4H2	Scg04-02	4BT1
CCEB460	4B1	HD231	4D14	SLM5.A	4AG1
CCEB463	4C1	HD232	4D15	sotto	4E3
CCEB566	4H1	HD243	4D16	Sotto G	4E4
CRY(-)B	4D11	HD263	4D12	T03B001	4AO1
Dch-T	4H1	HD270	4D19	T03C001	4AP1
DD-742	4J1	HD278	4F2	T08B 001	4AZ1
EA 11996	4CB1	HD293	4F3	T10A 001	4BF1
EA 14696	4CE1	HD301	4L2	T20 001	4AM1
EA 15196	4CD1	HD305	4G4	T20A 001	4BA1
EA 34594	4BQ1	HD320	413	T22 001	4AN1
EA 40694	4BS1	HD395	4P1	T23 001	4AT1
GM33	4AJ1	HD500	4Q2	T24 001	4BE1
GM54	4AC1	HD501	4Z1	T24A 001	4AX1
HD(CRY-1)	4D7	HD516	4S3	T35 001	4AQ1
HD1	4D1	HD518	4K3	T36 001	4AV1
HD1	4D20	HD521	4S2	T37 001	4AW1
HD1	4D6	HD525	4T1	T38 001	4AS1
HD1(CRY-6)	4D8	HD537	4L3	T39 001	4AY1
HD1(CRY-7)	4D9	HD541	4U1	T40 001	4BD1
HD1(CRY-8)	4D10	HD541	4U1	T41 001	4BB1
HD2	4A3	HD542	401	T42 001	4AR1
HD3	4B2	HD560	4F4	T43 001	4BC1
HD4	4C3	HD567	4Q1	T44 001	4AU1
HD6	4E4	HD867	4W1	T45 001	4BG1
HD7	4E2	HD867	4W1	tenebrionis	4AA1
HD8	4G1	HD868	4Y1	toguchini	4AD1
HD9	414	HDB-2	4A4	WHO2013-9	4Q4
HD10	411	HDB-8	4L1		

B. THURINGIENSIS STRAINS BY SEROTYPE

Serotype	Serovar	BGSC No.	Serotype	Serovar	BGSC No.
1	thuringiensis	4A1-4A9	28a,28c	jegathesan	4CF1
2	finitimus	4B1-4B2	29	amagiensis	4AE1
3a,3b,3c	kurstaki	4D1-4D21	31	toguchini	4AD1
3a,3c	alesti	4C1-4C3	32	cameroun	4AF1
3a,3d	sumiyoshiensis	4AO1	33	leesis	4AK1
3a,3d,3e	fukuokaensis	4AP1	34	konkukian	4AH1
4a,4b	sotto/dendrolimus	4E1-4E4	35	seoulensis	4AQ1
4a,4c	kenyae	4F1-4F4	36	malayensis	4AV1
5a,5b	galleriae	4G1-4G6	37	andalousiensis	4AW1
5a,5c	canadensis	4H1-4H2	38	oswaldocruzi	4AS1
6	entomocidus/subtoxicus	411-415	39	brasilensis	4AY1
7	aizawai/pacificus	4J1-4J5	40	huazhongensis	4BD1
8a,8b	morrisoni	4K1-4K3	41	sooncheon	4BB1
8a,8c	ostriniae	4Z1	42	jinghongiensis	4AR1
8b,8d	nigeriensis	4AZ1	43	guiyangiensis	4BC1
9	tolworthi	4L1-4L3	44	higo	4AU1
10a,10b	darmstadiensis	4M1-4M3	45	roskildiensis	4BG1
10a,10c	londrina	4BF1	46	chanpaisis	4BH1
11a,11b	toumanoffi	4N1	47	wratislaviensis	4BJ1
11a,11c	kyushuensis	4U1	48	balearica	4BK1
12	thompsoni	401	49	muju	4BL1
13	pakistani	4P1	50	navarrensis	4BM1
14	israelensis	4Q1-4Q8	51	xiaguangiensis	4BN1
15	dakota	4R1	52	kim	4BP1
16	indiana	4S2-4S3	53	asturiensis	4BQ1
17	tohokuensis	4V1	54	poloniensis	4BR1
18a,18b	kumamtoensis	4W1	55	, palmanyolensis	4BS1
18a,18c	yosoo	4CA1	56	rongseni	4BT1
19	tochigiensis	4Y1	57	pirenaica	4BU1
20a,20b	yunnanensis	4AM1	58	argentinensis	4BV1
20a,20c	pondicheriensis	4BA1	59	iberica	4BW1
21	colmeri	4X1	60	pingluonsis	4BX1
22	shanongiensis	4AN1	61	sylvestriensis	4BY1
23	japonensis	4AT1	62	zhaodongensis	4BZ1
	neoleonensis	4BE1	64	azorensis	4CB1
24a,24c	novosibirsk	4AX1	65	pulsiensis	4CC1
25	coreanensis	4AL1	66	graciosensis	4CD1
26	silo	4AG1	67	vazensis	4CE1
27	mexicanensis	4AC1	none	wuhanensis	4T1
28a,28b	monterrey	4AJ1			

B. THURINGIENSIS STRAINS BY SUBSPECIES

Serovar	Serotype	BGSC No.	Serovar	Serotype	BGSC No
aizawai/pacificus	7	4J1-4J5	mexicanensis	27	4AC1
alesti	3a,3c	4C1-4C3	monterrey	28a,28b	4AJ1
amagiensis	29	4AE1	morrisoni	8a,8b	4K1-4K3
andalousiensis	37	4AW1	muju	49	4BL1
argentinensis	58	4BV1	navarrensis	50	4BM1
asturiensis	53	4BQ1	neoleonensis	24a,24b	4BE1
azorensis	64	4CB1	nigeriensis	8b,8d	4AZ1
balearica	48	4BK1	novosibirsk	24a,24c	4AX1
brasilensis	39	4AY1	ostriniae	8a,8c	4Z1
cameroun	32	4AF1	oswaldocruzi	38	4AS1
canadensis	5a,5c	4H1-4H2	pakistani	13	4P1
chanpaisis	46	4BH1	, palmanyolensis	55	4BS1
colmeri	21	4X1	pingluonsis	60	4BX1
coreanensis	25	4AL1	pirenaica	57	4BU1
dakota	15	4R1	poloniensis	54	4BR1
darmstadiensis	10a,10b	4M1-4M3	pondicheriensis	20a,20c	4BA1
entomocidus/subtoxicus	6	411-415	pulsiensis	65	4CC1
finitimus	2	4B1-4B2	rongseni	56	4BT1
fukuokaensis	3a,3d,3e	4AP1	roskildiensis	45	4BG1
galleriae	5a,5b	4G1-4G6	seoulensis	35	4AQ1
graciosensis	66	4CD1	shanongiensis	22	4AN1
guiyangiensis	43	4BC1	silo	26	4AG1
higo	44	4AU1	sooncheon	41	4BB1
huazhongensis	40	4BD1	sotto/dendrolimus	4a,4b	4E1-4E4
iberica	59	4BW1	sumiyoshiensis	3a,3d	4AO1
indiana	16	4S2-4S3	sylvestriensis	61	4BY1
israelensis	14	4Q1-4Q8	thompsoni	12	401
japonensis	23	4AT1	thuringiensis	1	4A1-4A9
jegathesan	28a,28C	4CF1	tochigiensis	19	4Y1
jinghongiensis	42	4AR1	toguchini	31	4AD1
kenyae	4a,4c	4F1-4F4	tohokuensis	17	4V1
kim	52	4BP1	tolworthi	9	4L1-4L3
konkukian	34	4AH1	toumanoffi	11a,11b	4N1
kumamtoensis	18a,18b	4W1	vazensis	67	4CE1
kurstaki	3a,3b,3c	4D1-4D21	wratislaviensis	47	4BJ1
kyushuensis	11a,11c	4U1	wuhanensis	none	4T1
leesis	33	4AK1	xiaguangiensis	51	4BN1
londrina	10a,10c	4BF1	yunnanensis	20a,20b	4AM1
malayensis	36	4AV1	zhaodongensis	62	4BZ1

E. COLI CLONES OF B. THURINGIENSIS CRY GENES

Indexed by BGSC Accession Number

BGSC No.	Original Code	Reference	Description
ECE52	JM103(pOS4101)	Ge et al. (1989) PNAS 86:4037	<i>cry1Aa</i> cloned in pKK223-3; in <i>E. coli</i> JM103; ampicillin resistant
ECE53	JM103(pOS4201)	Ge et al. (1989) PNAS 86:4037	<i>cry1Ac</i> cloned in pKK223-3; in <i>E. coli</i> JM103; ampicillin resistant
ECE54	JM103(pOS4301)	Ge et al. (1989) PNAS 86:4037	cry1Ab cloned in pKK223-3; in <i>E. coli</i> JM103; ampicillin resistant
ECE125	DH5α(pSB607)	Donor: Dean DH Source: Yamamoto T	<i>cry1Ca</i> cloned in pTZ19R; in <i>E. coli</i> DH5 α ; ampicillin resistant
ECE126	DH5α(pSB304.2)	Donor: Dean DH Source: Yamamoto T	<i>cry2Aa</i> cloned in pTZ19R; in <i>E. coli</i> DH5α; ampicillin resistant
ECE127	pSB1103	Donor: Dean DH Source: Yamamoto T	$cry1Ea$ cloned in pTZ19R; in <i>E. coli</i> DH5 α ; ampicillin resistant
ECE128	pSB1407	Donor: Dean DH Source: Yamamoto T	cry1Ba cloned in plasmid; ampicillin resistant
ECE129	pSB1507	Donor: Dean DH Source: Yamamoto T	cry1Da cloned in plasmid; ampicillin resistant
ECE130	pSB1501	Donor: Dean DH Source: Yamamoto T	<i>cry9Aa</i> cloned in pSB1402; in <i>E. coli</i> DH5α; ampicillin resistant
ECE131	JM103(pOS4601)	Wu and Dean (1996) J Mol Biol 255:628	<i>cry3Aa</i> cloned in pKK223-3; in E. coli JM103; ampicillin resistant

Indexed by Cloned Gene

· · · ·	
Gene Name	BGSC No.
cry1Aa	ECE52
cry1Ab	ECE54
cry1Ac	ECE53
cry1Ba	ECE128
cry1Ca	ECE125
cry1Da	ECE129
cry1Ea	ECE127
cry2Aa	ECE126
cry3Aa	ECE131
cry9Aa	ECE130

Note: The right to use these genes for profit may be protected by U.S. and foreign patents. Please read the "Important Notice" on page 4 before ordering or using these clones.

BACILLUS CEREUS STRAINS BY BGSC CODE

BGSC No.	Original Code	Reference	Description
6A1	Т	Halvorson HO, source and donor	Wild type isolate
6A2	T-HT	Halvorson HO, source and donor	Wild type isolate
6A3	NRRL-569	Halvorson HO, source and donor	Wild type isolate; host for transducing phages CP51 and CP54
6A4	6A3 StrepR	Dean DH, source and donor	Streptomycin-resistant mutant of NRRL-569
6A5	ATCC 14579	(1980) Int. J. Syst. Bacteriol. 30:256	Wild type isolate. Type strain of <i>B.</i> cereus.
6E1	GP7	Bernhard K, et al. (1978) J Bacteriol 133:897	Contains naturally occurring plasmids, pBC15 and pBC16; resistant to tetracycline.
6E2	GP11	Bernhard K, et al. (1978) J Bacteriol 133:897	Contains naturally occurring plasmids, pBC17 and pBC18; resistant to kanamycin.
6S1	T-HW3	Zytkovicz TH, Halvorson HO (1972) Spores V, p 59	dpa
6S2	T-HT-8	Halvorson HO, source and donor	dpa ger

BACILLUS CEREUS GENOMIC LIBRARY

The *Bacillus* Genetic Stock Center is pleased to announce the availability of a high quality genomic library for *Bacillus cereus*. The library is described in an upcoming publication, still in press at the time this catalog was printed: Rondon, M. R., S. J. Raffel, R. M. Goodman, and J. Handelsman. 1999. Toward functional genomics in bacteria: analysis of gene expression in *Escherichia coli* from a bacterial artificial chromosome library of *Bacillus cereus*. Proc. Natl. Acad. Sci. USA **96**: (in press). We thank these members of the University of Wisconsin Plant Pathology *B. cereus* group for their generosity.

The library was constructed in a bacterial artificial chromosome vector in *E. coli*, a system that offers some distinct advantages over YAC vectors. First, BAC libraries appear to be quite stable. Secondly, many bacterial genes will be expressed in *E. coli*. Indeed, Rondon, *et al.* were able to detect six of ten *B. cereus*-specific activities they screened for among the *E. coli* clones. Thirdly, BAC clones can be manipulated rapidly and easily for electrophoretic analysis, DNA sequencing, and mutagenesis.

The BGSC will distribute copies of the library **at no cost** to serious researchers at academic, government, and other non-profit organizations. Interested parties at for-profit companies are encouraged to contact the BGSC to discuss distribution options. As individual clones are better characterized, they will be made available separately as well.

Description of Library

DNA source: <i>E. coli</i> host strain: Cloning vector:	Bacillus cereus UW85 DH10B pBeloBAC11 (see Shizuya, et al.1992. Proc. Natl Acad Sci USA 89:8794; Kim, et al. 1996. Genomics 34:213)
Number of clones:	323
Insert size range:	40 kb - >175 kb
Average insert:	98 kb
Genome coverage:	5.75 fold
<i>P</i> that a given 1 kb gene is included:	~99.7%

BACTERIOPHAGES OF B. CEREUS & B. THURINGIENSIS

1P29B1715V1Revnolds et al. 1988. J Gen MicrobiolAckermann HW, et al. (1995) Res MicrobiolPhage with long tail, single fiber; forms clear or veiled plaques of C mis genome size 78 kb1P30BastilleAckermann HW, et al. (1995) Res Microbiol 146:643146:643Phage with capsomers, double ba plate; forms clear or veiled plaques of C mis genome size 78 kb1P31Bat 1Ackermann HW, DuBow MS (1987) in: Viruses of ProkaryotesII. Natural Groups of Bacteriophages. CRC Press, Boca Raton, FL Ackermann HW, DuBow MS (1987) in: Viruses of ProkaryotesII. Natural Groups of Bacteriophages. CRC Press, Boca Raton, FL1P34Bat 10Ackermann HW, et al. (1995) Res Microbiol 16:643Phage with elongated head; form clear expanding plaques 0.1-0.5 r1P35Bat 11Ackermann HW, et al. (1995) Res Microbiol 121:203Phage with elongated head; form clear expanding plaques 0.1-0.5 r1P36Bat 18Ackermann HW, et al. (1995) Res Microbiol 121:203Transducing phage with hexagone icosahedral head; tail composed r cosahedral head; tail composed r icosahedral head; form clear of scienright pripheral knobs; cold late; forms clear plaques of 0.5- inm <t< th=""><th>BGSC No.</th><th>Original Code</th><th>Reference</th><th>Description</th></t<>	BGSC No.	Original Code	Reference	Description
Bacteriophages.CRC Press, Boca Raton, FL1P26Bam35-cAckermann HW, et al. (1987) Can J Microbiol 24:986Phage with icosahedral head, a double capsid, and spikes at vertices; chioroform sensitive Phage with icosahedral head, a double capsid, and spikes at vertices; chioroform sensitive Phage with icosahedral head, a double capsid, and spikes at vertices; chioroform sensitive Phage with icosahedral head, a double capsid, and spikes at vertices; chioroform sensitive Phage with icosahedral head, a double capsid, and spikes at vertices; chioroform sensitive Phage with icosahedral head, a double capsid, and spikes at vertices; chioroform sensitive Phage with icosahedral head, a double capsid, and spikes at vertices; chioroform sensitive Phage with icosahedral head, a double capsid, and spikes at vertices; chioroform sensitive Phage with icosahedral head, a double capsid, and spikes at vertices; chioroform sensitive Phage with icosahedral head, a double capsid, and spikes at vertices; chioroform sensitive Phage with icosahedral head; a double capsid, and spikes at vertices; chioroform sensitive Phage with icosahedral head; a double capsid, and spikes at vertices; chioroform sensitive Phage with and spikes at vertin sensitive Phage wit	1P25	Bace-11		
1P27Bam35-vAckermann HW, et al. (1987) Can J Microbiol 24:986Phage with is coshedral head, a double capsid, and spikes at wertices; chloroform sensitive smill segnome 33-351P28TP-15Ackermann HW, et al. (1994) Arch Virol 135:333 Reynolds et al. 1988. J Gen Microbiol 134:1577 Ackermann HW, et al. (1995) Res Microbiol 146:643Phage with is coshedral head, a vertices; chloroform sensitive Small temperate phage with 51 in head, 184 nm tail; genome 33-35 Phage with capsomers, double ba plate; forms clear or velled plaques of C mig genome size 78 kb1P30BastilleAckermann HW, et al. (1995) Res Microbiol 146:643Phage with capsomers, double ba plate; forms clear or velled plaques of C mig genome size 78 kb1P31Bat 1Ackermann HW, DuBow MS (1987) in: Viruses of ProkaryotesII. Natural Groups of Bacteriophages. CRC Press, Boca Raton, FL Ackermann HW, DuBow MS (1987) in: Viruses of ProkaryotesII. Natural Groups of Bacteriophages. CRC Press, Boca Raton, FL Ackermann HW, DuBow MS (1987) in: Viruses of ProkaryotesII. Natural Groups of Bacteriophages. CRC Press, Boca Raton, FL Ackermann HW, DuBow MS (1987) in: Viruses of ProkaryotesII. Natural Groups of Bacteriophages. CRC Press, Boca Raton, FL Ackermann HW, DuBow MS (1987) in: Viruses of ProkaryotesII. Natural Groups of Bacteriophages. CRC Press, Boca Raton, FL Ackermann HW, et al. (1995) Res Microbiol 146:643Transducing phage with hexagom coashedral head; tail composed i core with contractile sheath, bas plate with peripheral knobs; cold DMSO, 2 mM MgSO,1P36DP7Ackermann HW, et al. (1995) Res Microbiol 146:643Transducing phage with hexagom core with contractile sheath, bas plate; forms clear, irregul	1P26	Bam35-c	Bacteriophages. CRC Press, Boca Raton, FL Ackermann HW, <i>et al.</i> (1987) Can J Microbiol	double capsid, and spikes at
1P28TP-15Ackermann HW, et al. (1994) Arch Virol 135:33; Reynolds et al. 1988. J Gen Microbiol 134:1577Small temperate phage with 51 n head, 184 nm tail; genome 33:35 Phage with long tail, single fiber; 	1P27	Bam35-v		Phage with icosahedral head, a double capsid, and spikes at
1P29B1715V1Ackermann HW, et al. (1995) Res Microbiol 146:643; Ackermann HW, et al. (1994) Arch Virol 135:333Phage with long tail, single fiber; forms clear or veiled plaques of C mm; genome size 78 kb plate; forms clear, irregular plaq of 0.5-1.5 mm1P30BastilleAckermann HW, buBow MS (1987) in: Viruses of ProkaryotesII. Natural Groups of Bacteriophages. CRC Press, Boca Raton, FL Ackermann HW, DuBow MS (1987) in: Viruses of ProkaryotesII. Natural Groups of Bacteriophages. CRC Press, Boca Raton, FL Ackermann HW, DuBow MS (1987) in: Viruses of ProkaryotesII. Natural Groups of Bacteriophages. CRC Press, Boca Raton, FL Ackermann HW, DuBow MS (1987) in: Viruses of ProkaryotesII. Natural Groups of Bacteriophages. CRC Press, Boca Raton, FL Ackermann HW, DuBow MS (1987) in: Viruses of ProkaryotesII. Natural Groups of Bacteriophages. CRC Press, Boca Raton, FL Lecadet M-M, et al. (1995) Res Microbiol 121:203Phage with elongated head; form clear expanding plaques 0.1-0.5 r1P36Bat 18Ackermann HW, DuBow MS (1987) in: Viruses of ProkaryotesII. Natural Groups of Bacteriophages. CRC Press, Boca Raton, FL Lecadet M-M, et al. (1995) Res Microbiol 146:643Transducing phage with hexagona icosahedral head; tail composed o icosahedral head; tail composed of 0.5.2 mm1P38DP7Ackermann HW, et al. (1995) Res Microbiol 146:643Transducing phage with hexagona icosahedral head; tail composed of 0.5.2 mm1P39GP-10Ackermann HW, et al. (1995) Res Microbiol 146:643Phage with capsomers, double ba plate (forms clear jirregular plaq of 0.5.2 mm1P40mor1De Barjac, H., et al. (1974) CRS Acad Sci Ser D 279:139Phage with capsomers, doubl	1P28	TP-15		Small temperate phage with 51 nm
1P30BastilleAckermann HW, et al. (1995) Res Microbiol 146:643Phage with capsomers, double ha plate; forms clear, irregular plaqu of 0.5-1.5 mm1P31Bat 1Ackermann HW, DuBow MS (1987) in: Viruses of ProkaryotesII. Natural Groups of Bacteriophages. CRC Press, Boca Raton, FLPhage with capsomers, double ha plate; forms clear, irregular plaqu of 0.5-1.5 mm1P32Bat 5Ackermann HW, DuBow MS (1987) in: Viruses of ProkaryotesII. Natural Groups of Bacteriophages. CRC Press, Boca Raton, FL1P33Bat 7Ackermann HW, DuBow MS (1987) in: Viruses of ProkaryotesII. Natural Groups of Bacteriophages. CRC Press, Boca Raton, FL1P34Bat 10Ackermann HW, et al. (1995) Res Microbiol 146:6431P35Bat 11Ackermann HW, et al. (1987) in: Viruses of ProkaryotesII. Natural Groups of Bacteriophages. CRC Press, Boca Raton, FL1P36Bat 18Ackermann HW, et al. (1980) J Gen Microbiol 121:2031P37CP-54BerLecader M-M, et al. (1980) J Gen Microbiol 146:6431P38DP7Ackermann HW, et al. (1995) Res Microbiol 146:6431P39GP-10Ackermann HW, et al. (1995) Res Microbiol 146:6431P40mor1De Barjac, H., et al. (1974) CRS Acad Sci Ser D 279:19391P41PK1Ackermann HW, buBow MS (1987) in: Viruses of Prokaryotes-II. Natural Groups of Bacteriophages.1P42P400Ackermann HW, DuBow MS (1987) in: Viruses of Prokaryotes-II. Natural Groups of Bacteriophages.1P42P400Ackermann HW, DuBow MS (1987) in: Viruses of Prokaryotes-II. Natural Groups of 146:643	1P29	B1715V1	Ackermann HW, <i>et al.</i> (1995) Res Microbiol 146:643; Ackermann HW, <i>et al.</i> (1994) Arch Virol	Phage with long tail, single fiber; forms clear or veiled plaques of 0.5
1P31Bat 1Ackermann HW, DuBow MS (1987) in: Viruses of ProkaryotesII. Natural Groups of Bacteriophages. CRC Press, Boca Raton, FL1P32Bat 5Ackermann HW, DuBow MS (1987) in: Viruses of ProkaryotesII. Natural Groups of Bacteriophages. CRC Press, Boca Raton, FL1P33Bat 7Ackermann HW, DuBow MS (1987) in: Viruses of ProkaryotesII. Natural Groups of Bacteriophages. CRC Press, Boca Raton, FL1P34Bat 10Ackermann HW, et al. (1995) Res Microbiol 	1P30	Bastille	Ackermann HW, et al. (1995) Res Microbiol	Phage with capsomers, double base plate; forms clear, irregular plaques
1P32Bat 5Ackermann HW, DuBow MS (1987) in: Viruses of ProkaryotesII. Natural Groups of Bacteriophages. CRC Press, Boca Raton, FL1P33Bat 7Ackermann HW, DuBow MS (1987) in: Viruses of ProkaryotesII. Natural Groups of Bacteriophages. CRC Press, Boca Raton, FLPhage with elongated head; form clear expanding plaques 0.1-0.5 r1P34Bat 10Ackermann HW, DuBow MS (1987) in: Viruses of ProkaryotesII. Natural Groups of Bacteriophages. CRC Press, Boca Raton, FLPhage with elongated head; form clear expanding plaques 0.1-0.5 r1P35Bat 11Ackermann HW, DuBow MS (1987) in: Viruses of ProkaryotesII. Natural Groups of Bacteriophages. CRC Press, Boca Raton, FLTransducing phage with hexagona icosahedral head; tail composed i core with contractile sheath, bas plate with peripheral knobs; cold labile; stability improved by 10% DMSO, 2 mM MgSO,1P38DP7Ackermann HW, et al. (1995) Res Microbiol 146:643Transducing phage with hexagona icosahedral head; tail composed i core with contractile sheath, bas plate with peripheral knobs; cold labile; stability improved by 10% DMSO, 2 mM MgSO,1P39GP-10Ackermann HW, et al. (1995) Res Microbiol 146:643Phage with elongated head; form clear, irregular plaq of 0.5-2.5 mm1P40mor1De Barjac, H., et al. (1974) CRS Acad Sci Ser D 279:1939Phage with capsomers, double ba plate; forms clear plaques of 0.5-2.5 mm, frequently with halo1P42P400Ackermann HW, DuBow MS (1987) in: Viruses of ProkaryotesII. Natural Groups ofPhage with capsomers, double ba plate; forms clear plaques of 0.5- mm, frequently with halo	1P31	Bat 1	ProkaryotesII. Natural Groups of	
1P33Bat 7Ackermann HW, DuBow MS (1987) in: Viruses of ProkaryotesII. Natural Groups of Bacteriophages. CRC Press, Boca Raton, FL1P34Bat 10Ackermann HW, et al. (1995) Res Microbiol 146:643Phage with elongated head; form clear expanding plaques 0.1-0.5 r1P35Bat 11Ackermann HW, DuBow MS (1987) in: Viruses of ProkaryotesII. Natural Groups of Bacteriophages. CRC Press, Boca Raton, FLPhage with elongated head; form clear expanding plaques 0.1-0.5 r1P36Bat 18Ackermann HW, DuBow MS (1987) in: Viruses of ProkaryotesII. Natural Groups of Bacteriophages. CRC Press, Boca Raton, FLTransducing phage with hexagona icosahedral head; tail composed i core with contractile sheath, bas plate with peripheral knobs; cold labil; stability improved by 10% DMSO, 2 mM MgSO,1P38DP7Ackermann HW, et al. (1995) Res Microbiol 146:643Phage with capsomers, double ba plate; forms clear, irregular plaq of 0.5-2.5 mm1P40mor1De Barjac, H., et al. (1974) CRS Acad Sci Ser D 279:1939Phage with capsomers, double ba plate; forms clear, often overgrown plaques o 1.0-1.5 m1P42P400Ackermann HW, buBow MS (1987) in: Viruses of ProkaryotesII. Natural Groups ofPhage with capsomers, double ba plate; forms clear plaques of 0.5- mm, frequently with halo	1P32	Bat 5	Ackermann HW, DuBow MS (1987) in: Viruses of ProkaryotesII. Natural Groups of	
1P34Bat 10Ackermann HW, et al. (1995) Res Microbiol 146:643Phage with elongated head; form clear expanding plaques 0.1-0.5 r1P35Bat 11Ackermann HW, DuBow MS (1987) in: Viruses of ProkaryotesII. Natural Groups of 	1P33	Bat 7	Ackermann HW, DuBow MS (1987) in: Viruses of ProkaryotesII. Natural Groups of	
1P35Bat 11Ackermann HW, DuBow MS (1987) in: Viruses of ProkaryotesII. Natural Groups of Bacteriophages. CRC Press, Boca Raton, FL1P36Bat 18Ackermann HW, DuBow MS (1987) in: Viruses of ProkaryotesII. Natural Groups of 	1P34	Bat 10	Ackermann HW, et al. (1995) Res Microbiol	Phage with elongated head; forms clear expanding plagues 0.1-0.5 mm
1P36Bat 18Ackermann HW, DuBow MS (1987) in: Viruses of ProkaryotesII. Natural Groups of Bacteriophages. CRC Press, Boca Raton, FL1P37CP-54BerLecadet M-M, et al. (1980) J Gen Microbiol 121:203Transducing phage with hexagona icosahedral head; tail composed of core with contractile sheath, bass plate with peripheral knobs; cold labile; stability improved by 10% DMS0_2 mM MgS0_41P38DP7Ackermann HW, et al. (1995) Res Microbiol 146:643Phage with capsomers, double ba plate; forms clear, irregular plaqu of 0.5-2.5 mm1P39GP-10Ackermann HW, et al. (1995) Res Microbiol 146:643Phage with elongated head; form clear, often overgrown plaques of 1.0-1.5 mm1P40mor1De Barjac, H., et al. (1995) Res Microbiol 146:643Phage with capsomers, double ba plate; forms clear, plaques of 1.0-1.5 mm1P41PK1Ackermann HW, et al. (1995) Res Microbiol 146:643Phage with capsomers, double ba plate; forms clear plaques of 0.5- mm, frequently with halo1P42P400Ackermann HW, DuBow MS (1987) in: Viruses of ProkaryotesII. Natural Groups ofPrivises of Prokaryotes -II. Natural Groups of	1P35	Bat 11	Ackermann HW, DuBow MS (1987) in: Viruses of ProkaryotesII. Natural Groups of	
1P37CP-54BerLecadet M-M, et al. (1980) J Gen Microbiol 121:203Transducing phage with hexagona icosahedral head; tail composed of core with contractile sheath, bas 	1P36	Bat 18	Ackermann HW, DuBow MS (1987) in: Viruses of ProkaryotesII. Natural Groups of	
1P38DP7Ackermann HW, et al. (1995) Res Microbiol 146:643Phage with capsomers, double ba plate; forms clear, irregular plaqu of 0.5-2.5 mm1P39GP-10Ackermann HW, et al. (1995) Res Microbiol 	1P37	CP-54Ber	Lecadet M-M, et al. (1980) J Gen Microbiol	
1P39GP-10Ackermann HW, et al. (1995) Res Microbiol 146:643Phage with elongated head; form clear, often overgrown plaques or 1.0-1.5 mm1P40mor1De Barjac, H., et al. (1974) CRS Acad Sci Ser D 279:1939Phage with capsomers, double ba plate; forms clear plaques of 0.5- mm, frequently with halo1P42P400Ackermann HW, DuBow MS (1987) in: Viruses of ProkaryotesII. Natural Groups ofPhage with capsomers, double ba plate; forms clear plaques of 0.5- mm, frequently with halo	1P38	DP7		Phage with capsomers, double base plate; forms clear, irregular plaques
1P40mor1De Barjac, H., et al. (1974) CRS Acad Sci Ser D 279:19391P41PK1Ackermann HW, et al. (1995) Res Microbiol 146:643Phage with capsomers, double ba plate; forms clear plaques of 0.5- mm, frequently with halo1P42P400Ackermann HW, DuBow MS (1987) in: Viruses of ProkaryotesII. Natural Groups of	1P39	GP-10		Phage with elongated head; forms clear, often overgrown plaques of
1P41PK1Ackermann HW, et al. (1995) Res Microbiol 146:643Phage with capsomers, double ba plate; forms clear plaques of 0.5- mm, frequently with halo1P42P400Ackermann HW, DuBow MS (1987) in: Viruses of 	1P40	mor1		
1P42 P400 Ackermann HW, DuBow MS (1987) in: Viruses of ProkaryotesII. Natural Groups of	1P41	PK1	Ackermann HW, et al. (1995) Res Microbiol	Phage with capsomers, double base plate; forms clear plaques of 0.5-1.0 mm, frequently with halo
Bacteriophages. CRC Press, Boca Raton, FL	1P42	P400	ProkaryotesII. Natural Groups of	,,
1P43 Tb10 Ackermann HW, <i>et al.</i> (1994) Arch Virol 135:333; Phage with transverse tail disks;	1P43	ТЬ10	Ackermann HW, <i>et al.</i> (1994) Arch Virol 135:333; Ackermann HW, <i>et al.</i> (1995) Res Microbiol	forms clear, expanding plaques of 1-

Indexed by BGSC Accession No.

21/Back to Table of Contents

BACTERIOPHAGES BY ORIGINAL CODE

Original Code	BGSC No.
B1715V1	1P29
Bace-11	1P25
Bam35-c	1P26
Bam35-v	1P27
Bastille	1P30
Bat 1	1P31
Bat 10	1P34
Bat 11	1P35
Bat 18	1P36
Bat 5	1P32
Bat 7	1P33
CP-54Ber	1P37
DP7	1P38
GP-10	1P39
mor1	1P40
P400	1P42
PK1	1P41
Tb10	1P43
TP-15	1P28

SELECTED CLONING VECTORS AND HOSTS

BGSC No.	Original Code	Reference	Description
4D11	CRY(-)B	Stahley DP, <i>et al</i> . (1978) Bioch Biophys Res Comm 84:581	Reported to be plasmid-cured strain of <i>Bacillus</i> <i>thuringiensis</i> subsp. <i>kurstaki</i> , but reacts with no known Bt flagellar antisera
4D22	HD-73-20	González J. <i>et al.</i> (1982) Proc Natl Acad Sci 79:6951	Crystal minus derivative of <i>Bacillus thuringiensis</i> subsp. <i>kurstaki</i> HD-73; cured of 75, 11, and 10 kb plasmids
4E5	4E3 Cry-	Dean DH, unpublished	Crystal minus derivative of <i>Bacillus thuringiensis</i> subsp. sotto 4E3
4Q7	4Q2-81	Clark BD (1987) Ph.D. Thesis (Ohio St. Univ)	Bacillus thuringiensis subsp. israelensis plasmid- cured strain
4Q8	4Q2-81 str	Dean DH (unpublished)	Bacillus thuringiensis subsp. israelensis plasmid- cured strain with chromosomal streptomycin resistance mutation

Bacillus thuringiensis plasmid-cured hosts

Other Bacillus hosts

BGSC No.	Original Code	Reference	Description
1A748	1012M15	(unpublished)	<i>B. subtilis</i> host; restriction minus, sporulation plus; allows blue-white screening on X-gal with pHPS9; genotype glgB:: <i>lacZ</i> △ <i>M15</i> Km <i>leu</i> met r(-)m(+)
1A751	MW10	Wolf M. et al. (1995) Microbiology 141:281-290	<i>B.</i> subtilis host; deficient in major secreted proteases; genotype $egIS\Delta 102$ $bgIT/bgIS\Delta EV$ npr apr his
7A16	QMB1551	Quarter Master R&D Center, US Army (unpublished)	B. megaterium host; wild type isolate
13A4	WHO2297	Davisdon E, donor; Abbott Labs, source	<i>B. sphaericus</i> host; wild type isolate; isolated in Ceylon from <i>Culex pipiens quinquefasciatus</i>

Gram-positive plasmids

BGSC No.	Original Code	Reference	Description
1E6	BD366	Gryczan TJ, <i>et al</i> . (1978) J	B. subtilis host bearing pUB110; confers resistance
		Bacteriol 134:318	to kanamycin or neomycin and phleomycin; host
			genotype thr-5 trpC2
1E9	DSM402	Kreft J, <i>et al</i> . (1978) Mol Gen	B. subtilis host bearing pBC16; confers resistance
	(pBC16)	Genet 162:59	to tetracycline; host genotype <i>trpC2</i>
1E10	DSM402	Kreft J, <i>et al</i> . (1978) Mol Gen	B. subtilis host bearing pBC16-1; confers resistance
	(pBC16-1)	Genet 162:59	to tetracycline; host genotype <i>trpC2</i>
1E17	168(pC194)	Erlich SD, source	B. subtilis host bearing pC194; confers
			chloramphenicol resistance; host genotype <i>trpC2</i>
1E18	pE194	Weisblum B <i>et al</i> . (1979) J	B. subtilis host bearing pE194; confers
		Bacteriol 137:635	erythromycin resistance; host genotype thr-5 trpC2
1E60	1012M15	Eijsink, unpublished (see	B. subtilis host bearing pGVD1; confers
	(pGVD1)	Molecular Biological Methods	chloramphenicol resistance; 2571 bp plasmid with
		for Bacillus, Harwood &	copy number 150-200 in B. subtilis; contains multiple
		Cutting, eds., p 83)	cloning site; host genotype glgB::lacZ△M15 leu met
7E2	PV311	Vary P (unpublished)	B. megaterium host bearing pUB110; confers
			resistance to kanamycin or neomycin and
			phleomycin

BGSC No.	Original Code	Reference	Description
ECE10	MM294(pBS42)	Band L, Henner DJ (1984) DNA 3:17	<i>E. coli</i> host bearing pBS42 ; confers chloramphenicol resistance to <i>Bacillus</i> strains
ECE15	JM83(pMK3)	PlasmidGene 29:21; transformed into <i>E. coli</i> at BGSC	<i>E. coli</i> host bearing pMK3; confers ampicillin resistance to <i>E. coli</i> strains and kanamycin resistance to <i>E. coli</i> or <i>Bacillus</i> strains; fusion of fragments from pUC8 and pUB110
ECE32	JM103(pHP13)	Haima P, <i>et al</i> . (1987) Mol Gent 209:342	<i>E. coli</i> JM103 bearing pHP13; confers chloramphenicol resistance to <i>E. coli</i> or <i>Bacillus</i> strains, erythromycin resistance to <i>Bacillus</i> ; 4850 bp shuttle plasmid; hgh copy number in <i>E. coli</i> , low copy number in <i>B. subtilis</i>
ECE50	C600/pAMB22	Zukowski M, Miller L (1986) Gene 46:247	<i>E. coli</i> host bearing pAMB22; confers chloramphenicol and tetracycline resistance to <i>E. coli</i> or <i>Bacillus</i> strains; <i>xylE</i> fusion vector
ECE51	MC1000 (pHPS9)	Haima P, <i>et al</i> . (1990) Gene 86:63-69	<i>E. coli</i> MC1000 bearing pHPS9; confers chloramphenicol resistance to <i>E. coli</i> or <i>Bacillus</i> strains, erythromycin resistance to <i>Bacillus</i> ; 5650 bp shuttle shuttle vector providing α -complementation in suitable <i>E. coli</i> or <i>B. subtilis</i> hosts (eg. 1A748)

Bacillus-E. coli shuttle vectors

Antibiotic resistance cassettes

BGSC No.	Original Code	Reference	Description
ECE90	pDG641	Géurot-Fleury AM, <i>et al.</i> 1995. Gene 167:335	<i>E. coli</i> host bearing pDG641; confers ampicillin resistance to <i>E. coli</i> ; plasmid bears erythromycin resistance cassette for <i>Bacillus</i> , flanked by multiple restriction sites
ECE91	pDG646	Géurot-Fleury AM, <i>et al.</i> 1995. Gene 167:335	<i>E. coli</i> host bearing pDG646; confers ampicillin resistance to <i>E. coli</i> ; plasmid bears erythromycin resistance cassette for <i>Bacillus</i> , flanked by multiple restriction sites
ECE92	pDG647	Géurot-Fleury AM, <i>et al.</i> 1995. Gene 167:335	<i>E. coli</i> host bearing pDG647; confers ampicillin resistance to <i>E. coli</i> ; plasmid bears erythromycin resistance cassette for <i>Bacillus</i> , flanked by multiple restriction sites
ECE93	PDG780	Géurot-Fleury AM, et al. 1995. Gene 167:335	<i>E. coli</i> host bearing pDG780; confers ampicillin resistance to <i>E. coli</i> ; plasmid bears kanamycin-neomycin resistance cassette for <i>Bacillus</i> , flanked by multiple restriction sites
ECE94	PDG783	Géurot-Fleury AM, <i>et al.</i> 1995. Gene 167:335	<i>E. coli</i> host bearing pDG783; confers ampicillin resistance to <i>E. coli</i> ; plasmid bears kanamycin-neomycin resistance cassette for <i>Bacillus</i> , flanked by multiple restriction sites
ECE96	PDG782	Géurot-Fleury AM, <i>et al.</i> 1995. Gene 167:335	<i>E. coli</i> host bearing pDG782; confers ampicillin resistance to <i>E. coli</i> ; plasmid bears kanamycin-neomycin resistance cassette for <i>Bacillus</i> , flanked by multiple restriction sites
ECE97	PDG792	Géurot-Fleury AM, <i>et al.</i> 1995. Gene 167:335	<i>E. coli</i> host bearing pDG792; confers ampicillin resistance to <i>E. coli</i> ; plasmid bears kanamycin-neomycin resistance cassette for <i>Bacillus</i> , flanked by multiple restriction sites
ECE98	pDG1515	Géurot-Fleury AM, et al. 1995. Gene 167:335	<i>E. coli</i> host bearing pDG1515; confers ampicillin resistance to <i>E. coli</i> ; plasmid bears tetracycline resistance cassette for <i>Bacillus</i> , flanked by multiple restriction sites
ECE99	pDG1513	Géurot-Fleury AM, et al. 1995. Gene 167:335	<i>E. coli</i> host bearing pDG1513; confers ampicillin resistance to <i>E. coli</i> ; plasmid bears tetracycline resistance cassette for <i>Bacillus</i> , flanked by multiple restriction sites
ECE100	pDG1514	Géurot-Fleury AM, <i>et al.</i> 1995. Gene 167:335	<i>E. coli</i> host bearing pDG1514; confers ampicillin resistance to <i>E. coli</i> ; plasmid bears tetracycline resistance cassette for <i>Bacillus</i> , flanked by multiple restriction sites
ECE101	pDG1726	Géurot-Fleury AM, <i>et al.</i> 1995. Gene 167:335	<i>E. coli</i> host bearing pDG1726; confers ampicillin resistance to <i>E. coli</i> ; plasmid bears tetracycline resistance cassette for <i>Bacillus</i> , flanked by multiple restriction sites
ECE102	pDG1727	Géurot-Fleury AM, et al. 1995. Gene 167:335	<i>E. coli</i> host bearing pDG1727; confers ampicillin resistance to <i>E. coli</i> ; plasmid bears tetracycline resistance cassette for <i>Bacillus</i> , flanked by multiple restriction sites

2×SG Medium

Leighton, T. J. and R. H. Doi. 1971. J. Biol. Chem. 246:3189-3195.

Although most strains of *B. thuringiensis* or *B. cereus* grow reasonably well in familiar media such as LB or Nutrient broth, it is often possible to obtain higher growth densities and sporulation frequencies with more specialized media. We have used a *B. subtilis* sporulation medium with very good results.

Per liter of distilled water:

Difco Nutrient broth	16.0	g
KCl	2.0	g
MgSO ₄ ·7H ₂ O	0.5	g
Agar (if desired)	17.0	g

Adjust the pH to 7.0 with addition of 1 M NaOH. Autoclave. Cool to 55[°]C and add:

$1 \text{ M Ca}(\text{NO}_3)_2$	1.0	ml
$0.1 \text{ M} \text{MnCl}_2 \cdot \text{H}_2 \text{O}$	1.0	ml
1 mM FeSO₄	1.0	ml
50% (w/v) glucose, filter sterilized	2.0	ml

HCO Medium

Lecadet, M.-M., M. O. Blondel, J. Ribier. 1980. J. Gen. Microbiol. 121:203-12.

A semi-defined medium for growth and sporulation in *B. thuringiensis berliner* and many other strains.

Per liter of distilled water:

Casamino acids	7.0	g
KH ₂ PO ₄	6.8	g
MgSO ₄ ·7H ₂ O	0.12	g
Agar	17	g

Adjust the pH to 7.2. Autoclave. Cool to 55[°]C and add from sterile stocks to a final concentration of:

MnSO ₄ ·4H ₂ O	0.0022	g
ZnSO₄∙7H₂O	0.014	g
$Fe_2(SO_4)_3$	0.02	g
$CaCl_2 \cdot 4H_2O$	0.018	g
Glucose	3	g

BP Medium

A complete medium for growth and sporulation. Substitute 7.0 g of Bactopeptone (Difco) for the casamino acids in HCO medium.

MA18 Medium

NBY Medium

Thorne C. B. 1968. J. Virol. 2:657-662.

Per liter of distilled water:

Nutrient broth	8	g
Yeast extract	3	g
Agar (if desired)	15	g

NBYS Medium

Lecadet, M.-M., M. O. Blondel, J. Ribier. 1980. J. Gen. Microbiol. 121:203-12.

A complete medium for *B. thuringiensis berliner* and many other strains; useful for phage propagation.

Per liter of distilled water:

Nutrient broth	8	g
Yeast extract	3	g
KCl	0.4	g
Agar (if desired)	15	g

Autoclave. Cool to 55[°]C and add from sterile stock solutions:

1.2% MgSO₄·7H₂O	1	ml
0.1% MnSO ₄ ·4H ₂ O	1	ml
0.014% FeSO ₄ ·7H ₂ O	1	ml
7.5% CaCl ₂ ·2H ₂ O	1	ml

PA Medium

Thorne C. B. 1968. J. Virol. 2:657-662.

For assaying phage CP-54Ber and related phages. Gives 30% higher efficiency of plating that NBY.

Per liter of distilled water:

Nutrient broth	8 g
NaCl	5 g
MgSO ₄ ·7H ₂ O	0.2 g
Agar (if desired)	15 g

Adjust pH to 5.9. Autoclave. Cool to 55[°]C and add from sterile stock solutions:

5% MnSO ₄ ·4H ₂ O	1	ml
15% CaCl ₂ ·2H ₂ O	1	ml

G-Tris Medium

Aronson, A. I., et al. 1971. J. Bacteriol. 106:1016-1025.

G-Tris is a general purpose growth and sporulation medium for *B. cereus* and *B. thuringiensis*.

The following stocks are made up and sterilized in concentrated form, then mixed with sterile distilled water to the following **final concentrations**:

Tris-HCl (pH 7.6)	0.01	Μ
FeSO ₄ ·7H ₂ O	0.00005	%
CuSO ₄ ·5H ₂ O	0.0005	%
ZnSO ₄ ·7H ₂ O	0.0005	%
MnSO₄∙H₂O	0.005	%
MgSO ₄	0.02	%
$CaCl_2 \cdot 2H_2O$	0.008	%
K ₂ HPO ₄	0.05	%
$(NH_4)_2 SO_4$	0.2	%
glucose, filter sterilized	0.1	%

CDGS Medium

Nakata, H. M. (1964) J. Bacteriol. 88:1522.

CDGS is a chemically defined growth and sporulation medium developed for *B. cereus* T. It is also useful for many *B. thuringiensis* strains, although the partial auxotrophic requirements can vary from strain to strain.

For CDGS, use the recipe for G-Tris with the following modifications:

In the place of Tris-HCl (pH 7.6), use 0.1 M potassium phosphate buffer, pH 6.4. In the place of Yeast extract, use the following amino acid mixture to the following final concentrations:

L-glutamic acid	1.84	µg/ml
L-leucine	0.80	µg/ml
L-valine	0.30	µg/ml
L-threonine	0.168	µg/ml
L-methionine	0.07	µg/ml
L-histidine	0.05	µg/ml

ELECTROPORATION OF B. THURINGIENSIS AND B. CEREUS

A major advance in the genetics of *Bacillus cereus* and *B. thuringiensis* came in 1989 when several labs independently applied electroporation technology to transform vegetative cells with plasmid DNA (Belliveau and Trevors; Bone and Ellar; Lereclus *et al.*; Mahillon *et al.*; Masson *et al.*; Schurter *et al.*). By comparison, previous transformation techniques were much slower, more labor intensive, and less efficient. The protocols developed at this early stage varied in the cell preparation methods, electroporation buffer components, and electric pulse parameters (see the accompanying table), but each could achieve frequencies of 10^2-10^5 transformants per microgram of plasmid DNA with a wide variety of hosts and vectors.

Macaluso and Mettus (1991) added the important observation that some *B. thuringiensis* strains restrict methylated DNA. Plasmids isolated from *B. megaterium* or Dcm⁻ strains of *E. coli* transformed *B. thuringiensis* with much higher frequencies than did DNA isolated from *B. subtilis* or Dcm⁺ strains of *E. coli*. Their data also provided evidence that several restriction systems exist within *B. thuringiensis*. The use of unmethylated DNA with the Macaluso and Mettus protocol allows transformation frequencies as high as $3 \times 10^6 / \mu g$ of DNA to be achieved (see Protocol 1).

- Belliveau, B. H. and J. T. Trevors. 1989. Transformation of *B. cereus* vegetative cells by electroporation. Appl. Environ. Microbiol. 55:1649-1652.
- Bone, E. J. and D. J. Ellar. 1989. Transformation of *Bacillus thuringiensis* by electroporation. FEMS Letts. 58:171-178.
- Lereclus, D., O. Arantès, J. Chaufaux, and M.-M. Lecadet. 1989. Transformation and expression of a cloned δ -endotoxin gene in *Bacillus thuringiensis*. FEMS Letts. 60:211-218.
- Macaluso, A. and A. M. Mettus. 1991. Efficient transformation of *Bacillus thuringiensis* requires nonmethylated plasmid DNA. J. Bacteriol. **173**:1353-1356.
- Mahillon, J., W. Chungjatupornchai, J. Decock, S. Dierickx, F. Michiels, M. Peferoen, and H. Joos. 1989. Transformation of *Bacillus thuringiensis* by electroporation. FEMS Letts. 60:205-210.
- Masson, L., G. Préfontaine, and R. Brousseau. 1989. Transformation of *Bacillus thuringiensis* vegetative cells by electroporation. FEMS Letts. 60:273.
- Schurter, W., M. Geiser and D. Mathé. 1989. Efficient transformation of *Bacillus thuringiensis* and *B. cereus* via electroporation: transformation of acrystalliferous strains with a cloned delta-endotoxin gene. Mol. Gen. Genet. 218:177-181.

Adapted from:

Macaluso and Mettus. 1991. J Bacteriol 173:1353-1356.

Materials:

culture of *B. thuringiensis* host on solid medium plasmid DNA, prepared from *B. megaterium* or *E. coli dcm*⁻ host 100 ml stock of BHIG (Brain Heart Infusion + 0.5% glycerol), sterile 10 ml of BHIG in a 250 ml flask, sterile 95 ml of BHIG in a 1 or 2 liter flask, sterile 150 ml of EB (0.625 M sucrose, 1 mM MgCl₂), sterile and chilled on ice two sterile centrifuge bottles sterile cryovials for storage of electro-competent cells, if desired 0.4 mM electroporation cuvettes (BioRad) BioRad GenePulser[®] with Pulse Controller[®] sterile test tubes selective agar plates (LB agar plus appropriate antibiotic)

Protocol:

Day 1

- 1. Inoculate 10 ml of BHIG in a 250 ml flask with a single *Bt* colony.
- 2. Incubate at 30°C with moderate shaking overnight.

Day 2

Cell Preparation

- 1. Dilute 5 ml of overnight culture into 95 ml BHIG in 1 or 2 liter flask.
- 2. Incubate 1 hr at 30°C with vigorous shaking.
- 3. Pellet cells by centrifugation (at an appropriate speed for your machine)
- 4. Suspend in 100 ml cold EB. Note: Be careful to keep cells cold from this point forward until the electric pulse has been delivered during transformation.
- 5. Repeat centrifugation.
- 6. Suspend in 50 ml cold EB.
- 7. Store 2 ml aliquots of the cell suspension in cryovials and store in -70°C for later use, if desired.

Transformation

- 1. If using frozen cells, thaw them on ice. Transfer 0.8 ml aliquot of cell suspension to a 0.4 cm cuvette; mix in up to 10 μl DNA.
- 2. Chill on ice 5 minutes.
- 3. Apply a single pulse at a setting of 2.5 kV, 25 $\mu F,$ 5 $\Omega.$
- 4. Dilute cell suspension with 1.6 ml BHIG.
- 5. Incubate at 30°C with moderate shaking for 1 hr.
- 6. Plate dilutions on selective agar plate and incubate overnight.

Comparison of published methods for electroporation of *B. cereus* and *B. thuringiensis*

Step	Belliveau et al.	Bone and Ellar	Lereclus et al.	Macaluso et al.	Mahillon <i>et al.</i>	Masson <i>et al.</i>	Schurter et al.
Starter culture	10 ml LB, 16 hr, 37°C, 100 rpm	Streak cells on LB agar; inc. ON at R.T.		BHIG (BHI + 0.5% glycerol), OH, 30°C, with shaking	20 ml 2×LB, ON, 37°C, 180 rpm		10 ml LB, ON, 27°C, 50 rpm
Culture	2 ml inoculum into 10 ml LB; 2.5 hr, 37°C, 100 rpm, final 0D ₆₀₀ = 1.0	Inoculate LB from plate; 30°C, 200 rpm, final OD ₆₀₀ = 0.5	1 liter BHI, 37°C, with shaking, final OD ₆₀₀ = 2.0	dilute 1:20 in BHIG; 1 hr, 30°C, with shaking	Inoculate 4 ml into 400 ml pre-warmed 2×LB; 3-4 hr, 37°C, 180 rpm	1 liter NB, final OD ₆₀₀ = 0.5	dilute 1:100 into LB; 30°C, 250 rpm, final $OD_{550} = 0.2$
Washes	pellet, 1 ml ice cold EB repeat repeat	pellet, cold H ₂ O repeat pellet, cold EB	none	pellet, EB	pellet, 200 ml H ₂ O pellet, 30 ml H ₂ O	pellet, EB; 4 cycles	pellet, 1/40 volume EB
EB composition	10 mM HEPES, pH 7.0	1 mM HEPES, pH 7.0; 10% glycerol	40% PEG 6000 (w/v)	0.625 M sucrose, 1 mM MgCl ₂	30% PEG 1000 (w/v)	10% glycerol	400 mM sucrose, 1 mM MgCl ₂ , 7 mM phosphate buffer, pH 6.0
Final Suspension	pellet, 4 ml ice cold EB	pellet, cold EB to 10 ⁹ - 10 ¹⁰ CFU/ml	pellet, 10 ml cold EB	pellet, 0.5 vol EB	pellet, EB to 5 ml/g	pellet, 2 ml EB (to 1010 CFU/ml)	pellet, 1/40 volume EB
Mixture with DNA	0.8 ml cells + 30 μl DNA (0.5 μg); chill 5 min	0.1-0.2 ml cells + 1-5 μl DNA (0.1-0.5 μg); chill 1 min	0.2 ml + 1 μg DNA in TE; chill	0.8 ml + <10 μl DNA; chill on ice 5 min	0.1 ml cells + DNA	40 µl cells + DNA	0.8 ml cells + DNA; incubate 4°C 10 min
Cuvette	0.4 cm	0.4 cm	0.2 cm	0.4 cm	0.4 cm (?)	0.2 cm	0.4 cm (?)
Pulse	1.5 kV, 3 μF (no pulse controller used)	2.5 kV, 25μ F, 200Ω	2.5 kV, 25 μ F, 1000 Ω	1.3 kV, 25 μ F, 5 Ω	1.4 kV, 25 μF, 400 Ω	0.5 kV, 25 µF (no pulse controller)	1.3 kV, 25 µF (no pulse controller)
Dilution	into 7.2 ml LB	immediately with 1 ml LB	into 2 ml BHI	on ice 5 min; dilute into 1.6 ml BHIG	with 1.9 ml LB	with 1 ml SOC	with 1.2 ml LB
Recovery/Expression Recipients	1 hr, 37°C, 60 rpm <i>B. cereus</i> 569	1 hr, 30°C Bt serovars morissoni, aizawai, kurstaki, israelensis	1 hr, 37°C, shaking 5 of 7 strains transformable	1 hr, 30°C, shaking 9 <i>Bt</i> strains	90 min, 37°C, shaking 17 of 21 <i>Bt</i> strains transformable	1 hr, 37°C, shaking <i>Bt kurstaki</i>	1 hr, 30°C, 250 rpm "Bt" HD1 cryB
Frequencies	10 ² -10 ⁴ /µg	104-105 ∕µg	10²-10⁵ /µg	up to 3×106 /µg	10²-10⁵ ∕µg depending on strain, plasmid	3-4×105 ∕µg	10 ⁶ -10 ⁷ /µg
Notes		Co-transformation of pC194, pUB110 at 10 ²		Plasmids from <i>B.</i> megaterium or Dcm- <i>E. coli</i> more efficient than from Dcm+ or <i>B. subtilis</i> At least 4 classes of <i>Bt</i> restriction systems	used pC194, pE194, and specialized vectors		frequency curve linear over 5ng-5µg DNA; recipient may not actually have been derived from HD1

GENERALIZED TRANSDUCTION WITH CP-54BER

Adapted from: Lecadet, M.-M., M. O. Blondel, J. Ribier. 1980. J. Gen. Microbiol. 121:203-12.

Assaying Phage CP54-Ber

- 1. Prepare spores in one of the complete growth and sporulation media described in the previous pages (2×SG, NBYS, BP). Wash them in sterile distilled water, store them at 4°C for 3-4 days, and wash them again. Heat to 65°C for 15 min. Cool. Store at 4°C.
- 2. Mix 0.1 ml of a suitable phage dilution with 3 ml of soft PA agar (0.5% agar) and 10⁸ spores.
- 3. Pour the soft agar, spore, and phage mixture on PA agar (1.5% agar).
- 4. Incubate at 35°C overnight. Plaques are turbid on *B. thuringiensis berliner* 1715, clear on *B. cereus* 6A3 (NRRL-569).

Propagating Phage CP54-Ber

- 1. Mix 0.1 ml of phage dilution with 3 ml of soft NBY agar (0.5% agar) and 10⁸ spores.
- 2. Pour the soft agar, spore, and phage mixture on NBY agar (1.5% agar).
- 3. Incubate at 35°C overnight.
- 4. Flood plate with 3 ml NBY broth. Take up broth and soft agar layer in a 10 ml pipet.
- 5. Pellet agar, cells by low speed centrifugation $(5,000 \times g)$
- 6. Filter the lysate through 0.8 micron Millipore filter.

Transduction with Phage CP54-Ber

- 1. Inoculate a single colony of the recipient strain into 10 ml NBYS and incubate at 30° C with shaking for 5-6 hours (OD₆₅₀ \approx 3.5).
- 2. Centrifuge at 5,000 \times g for 15 min to pellet cells.
- 3. Suspend cells in original volume of fresh broth. Cell titer will be $\approx 4 \times 10^8$ cfu/ml.
- 4. Mix 0.8 ml of recipient culture with 0.1-0.2 ml of phage lysate, diluted to give a multiplicity of infection of \geq 2.
- 5. Incubate at 35°C for 30 min with mild shaking
- 6. Plate 0.1 ml aliquots on selective media. Select for antibiotic resistance or base or vitamin prototrophy on HCO; select for amino acid prototrophy on MP18 with the appropriate amino acid omitted.

CONJUGATION-LIKE MATING WITH B. THURINGIENSIS

Many strains of *B. thuringiensis* are able to transfer plasmids to other *B. thuringiensis* or *B. cereus* strains by a conjugation-like process first reported by González and Carlton (5). At least eight self-transmissable plasmids have since been identified in *B. thuringiensis* (table 1). A number of other uncharacterized conjugation systems have been detected as well (6).

The best studied conjugative plasmid is pXO16, the 200 kb plasmid of *B. thuringiensis* subsp. israelensis. In contrast to the mating systems in other bacterial species, pXO16-mediated conjugation does not involve pili and is not induced by pheromones. Instead, mixtures of donor and recipient strains form large clumps (1). The clumping mechanism is protease sensitive, and there is some evidence that a specific S-Layer protein found in donor strains may be required for plasmid transfer (1, 9). Scanning electron micrographs show direct connections between cells in mating cultures but not in monocultures of donor or recipient strains (2). Plasmid transfer can be detected within 3.5-4 min after mixing donor and recipient cultures. Transfer of DNA is rapid, on the order of 1 kb per second. Recipients can become donors after 40 minutes, probably the time required for a mating protein to be incorporated into the S-Layer. Virtually every cell in the donor population is potent, and when equal numbers of donors and recipients are mixed, virtually every recipient receives pXO16 (3). A variety of plasmids, including the *B. cereus* plasmid pBC16, the Staphylococcus aureus plasmids pC194 and pE194, as well as cryptic B. thuringiensis plasmids, can be mobilized at plasmid-dependent frequencies in the range of 10^{-2} - 10^{-5} transconjugants per donor cell (2). Not every *B. thuringiensis* strain can serve as a recipient in pXO16-mediated mating. Among BGSC strains, 4D4, 4H2, 4K1, 4N1, 4O1, 4P1, 4T1, 4U1, 4Q7, and 6A5 are known to be recipients. BGSC strains 4B2, 4C3, 4E4, 4G5, 4I4, 4J4, 4L3, 4R1, 4S2, and 4Y1 are known not to be recipients (6).

Protocol--Mating Bacillus thuringiensis subsp. israelensis with a recipient (Agr⁻) strain

- 1. Grow donor and recipients separately at 30°C in LB containing appropriate antibiotics.
- 2. Dilute each culture 1:100 into fresh, prewarmed LB and continue incubation.
- 3. At late log phase (OD₆₀₀ \approx 0.5-1.0), add 250 µl per OD₆₀₀ unit of each culture to a prewarmed 7 ml aliquot of LB in a small flask or large test tube.
- 4. Incubate at 30°C with moderate shaking (180 rpm) for 3 hr.
- 5. Plate on appropriate agar to select for transconjugants.

Plasmid Host Strain Description Recipients Ref. pAW63 Bt kurstaki HD73 Bti, B. cereus, B. subtilis, B. Contains no cry genes. Transfer 8 (BGSC 4D4) nearly 100% efficient in mating licheniformis, B. sphaericus experiments. Mobilized plasmids must have functional *mob* (*pre*) gene Similar to pAW63, but bears a cry pHT73 Bt kurstaki HD73 8 (BGSC 4D4) gene. Less efficient than pAW63 at mobilizing pBC16 Bt thuringiensis pX011 Does not bear cry gene B. thuringiensis, B. cereus, B. 4 4042A anthracis strains Bt thuringiensis pX012 Bears cry gene B. thuringiensis, B. cereus, B. 4 4042A anthracis strains pX013 Bt morrisoni Does not bear cry gene B. thuringiensis, B. cereus, B. 7 4049 anthracis strains pX014 7 Bt alestiYAL Does not bear cry gene B. thuringiensis, B. cereus, B. anthracis strains 7 pX015 Bt morrisoni Does not bear cry gene B. thuringiensis, B. cereus, B. 4049 anthracis strains pX016 Transfer nearly 100% efficient in Bt morrisoni B. cereus, B. anthracis strains; B. 6, 7 4049 mating experiments. Able to thuringiensis strains with Agr mobilize theta-form plasmids and phenotype rolling circle plasmids lacking the mob or pre gene.

Table 1. Conjugative plasmids of Bacillus thuringiensis

References

- 1. Andrup, L., J. Damgaard, and K. Wasserman. 1993. Mobilization of small plasmids in *Bacillus* thuringiensis subsp. israelensis is accompanied by specific aggregation. J. Bacteriol. **175**:6530-6536.
- 2. Andrup, L., O. Jørgensen, A. Wilcks, L. Smidt, and J. B. Jensen. 1996. Mobiolization of "nonmobilizable" plasmids by the aggregation-mediated conjugation system of *Bacillus thuringiensis*. Plasmid. 36:75-85.
- 3. Andrup, L., L. Smidt, K. Andersen, and L. Boe. 1998. Kinetics of conjugative transfer: a study of the plasmid pXO16 from *Bacillus thuringiensis* subsp. *israelensis*. Plasmid. 40:30-43.
- 4. Battisti, L., B. D. Green, and C. B. Thorne. 1985. Mating system for transfer of plasmids among *Bacillus anthracis, Bacillus cereus, and Bacillus thuringiensis.* J. Bacteriol. 162:543-550.
- 5. **González**, J. M., Jr., and B. C. Carlton. 1982. Plasmid transfer in *Bacillus thuringiensis*, p. 85-95. *In* U. Streips, S. Goodgal, W. Guild, and G. Wilson (ed.), Genetic Exchange: A Celebration and a New Generation. Marcel-Dekker, Inc., New York.
- 6. Jensen, G. B., L. Andrup, A. Wilcks, L. Smidt, and O. M. Poulsen. 1996. The aggregationmediated conjugation system of *Bacillus thuringiensis* subsp. *israelensis:* host range and kinetics of transfer. Curr. Microbiol. 33:228-236.
- 7. Reddy, A., L. Battisti, and C. B. Thorne. 1987. Identification of self-transmissible plasmids in four *Bacillus thuringiensis* subspecies. J. Bacteriol. 169:5263-5270.
- 8. Wilcks, A., N. Jayaswal, D. Lereclus, and L. Andrup. 1998. Characterization of plasmid pAW63, a second self-transmissible plasmid in *Bacillus thuringiensis* subsp. *kurstaki* HD-73. Microbiology. 144:1263-1270.
- 9. Wiwat, C., W. Panbangred, S. Mongkolsuk, S. Pantuwatana, and A. Bhumiratana. 1995. Inhibition of a conjugation-like gene transfer process in *Bacillus thuringiensis* subsp. *israelenesis* by the anti-S-Layer antibody. Curr Microbiol. **30**:69-75.

PLASMID PROFILES OF B. THURINGIENSIS AND B. CEREUS

Adapted from: Jensen, G. B., et al. 1995. J. Bacteriol 177:2914-2917.

Most strains of *Bacillus cereus* and *Bacillus thuringiensis* contain an array of plasmids, from the small to the very large (see González *et al.* 1982. Proc. Natl. Acad. Sci. **79**:6951; Carlson and Kolstø. 1993. J. Bacteriol. **175**:1053; Carlson *et al.* 1994. Appl. Environ. Microbiol. **60**:1719). A.-B. Kolstø cites unpublished work in which megaplasmids have been detected in over 50 strains of *B. cereus* and *B. thuringiensis* (Mol. Microbiol. **24**:241-248). Standard alkaline lysis or boiling protocols are efficient at isolating the smaller plasmids but have very low or negligent yields of the larger ones. The following protocol gives reproducible, complete plasmid profiles for *B. thuringiensis* or *B. cereus*.

- 1. Grow the *B. cereus* or *B. thuringiensis* strain overnight at 30°C in 2 ml LB. The final OD₆₀₀ will be 11-15.
- 2. Transfer the culture to a microcentrifuge tube and pellet the cells with a brief spin.
- 3. Suspend the cells in 100 ~l E buffer (15% w/v sucrose, 40 mM Tris-HCl, 2 mM EDTA, pH 7.9) by pipeting them up and down.
- 4. Add 200 μl lysing solution (3% SDS, 50 mM Tris-HCl, pH 12.5).
- 5. Heat lysate at 60°C for 30 min.
- 6. Add 5 U proteinase K; invert the tube 20 times.
- 7. Incubate at 37°C for 90 min.
- 8. Add 1 ml phenol-chloroform-isoamyl alcohol; invert 40 times.
- 9. Centrifuge at high speed for 15 min.
- 10. Analyze the aqueous supernatant by electrophoresis on a horizontal 0.5% agarose gel.

PURIFICATION OF *B. THURINGIENSIS* CRYSTALS

Purification of Crystals on NaBr Gradients

Chang, C., S.-M. Dai, R. Frutos, B. A. Federici, and S. S. Gill. 1992. Properties of a 72-kilodalton mosquitocidal protein from *Bacillus thuringiensis* subsp. morrisoni PG-14 expressed in *Bacillus thuringiensis* subsp. kurstaki by using the shuttle vector pHT3101. Appl. Environ. Microbiol. **58**:507-512.

- 1. Grow B. thuringiensis strain on nutrient agar plate about 5 days at 30°C or until cell autolysis is observed.
- 2. Harvest the lysates by centrifugation at $12,000 \times g$.
- 3. Wash three times with 10 mM EDTA-1 M NaCl-0.1 mM PMSF, each time collecting the top two layers of the three-layered pellet. Note: the bottom layer is composed of spores.
- 4. Resuspend in water and sonicate 5 min on ice.
- 5. Centrifuge at 20,000 rpm for 1 hr in SW28 rotor by using a discontinuous NaBr gradient of 38.5% (4 ml), 41.9% (6 ml), 45.3% (6 ml), 48.9% (6 ml), 52.7% (6 ml), 56.3% (3 ml).
- 6. Partially purified inclusions recentrifuged in another discontinuous NaBr gradient of 38.5% (5 ml), 40% (7 ml), 42% (7 ml), 44% (6 ml), and 47% (1.5 ml) under same conditions.
- 7. Collect purified inclusions and wash three times in cold, deionized water to remove all of the NaBr.
- 8. Resuspend in 5-10 ml water with CompleteTM tablet and store at 4° Cuntil needed.

Purification of Crystals on Sucrose Gradients

Debro, L., P. C. Fitz-James, and A. Aronson. 1986. Two different parasporal inclusions are produced by *Bacillus thuringiensis subsp. finitimus. J. Bacteriol.* 58:507-512.

- 1. Grow B. thuringiensis in G-Tris medium with shaking at 30°C for 36-48 hr.
- 2. Recover spores and crystals by centrifugation and wash once with 1 M NaCl and 2-3 times in ddHO.
- 3. If desired, boil 2 min before the final water wash to limit protease activity.
- 4. Layer concentrated suspension of spores and crystals in ddH₂O on a step sucrose gradient consisting of 5 ml 60%, 3 ml of 40%, 5 ml of 30%, and 5 ml of 10% sucrose (wt/vol) in water. Centrifuge 4,080 × g for 20-30 min in Sorvall HB4 swinging bucket rotor. Free inclusions band; spores pellet.
- 5. Repeat step gradient as deemed necessary.
- 6. Wash recovered crystals in water and use immediately, or store at 4°C for up to 48 hr, or desiccate for longer storage periods.

Purification of Crystals on Renografin Gradients

Aronson, A. I., E. S. Han, W. McGaughey, D. Johnson. 1991. The solubility of inclusion proteins from *Bacillus thuringiensis* is dependent upon protoxin composition and is a factor in toxicity to insects. Appl. Environ. Microbiol. **57**:981-986.

- 1. Grow B. thuringiensis strain on G-Tris agar plate 36-40 hr at 30°C or 4 days at 27°C.
- 2. Scrape spores from the surface of chilled Petri plates into 1 M KCl-5 mM EDTA.
- 3. Wash once with deionized water containing 5 mM PMSF and twice with water (10 ml each).
- 4. Suspend pellets in water plus 0.2% Triton X-100 and 1% Renografin.
- 5. Layer portions over step gradients consisting of 6 ml of 50% Renografin and 4 ml of 40% Renografin in water.
- 6. Centrifuge in Sorvall HB4 rotor at 8,000 rpm for 50 min.
- 7. Remove inclusion band and if necessary purify through a second step gradient.
- 8. Dilute ³ fivefold with water, pellet at 8,000 rpm for 20 min in Sorvall SS-1 rotor.
- 9. Wash twice with deionized water, then dry in Speed-Vac.

Purification of Crystals in a Separatory Funnels

Delafield, F. P., H. J. Somerville, and S. C. Rittenberg. 1968. Immunological homology between crystal and spore protein of *Bacillus thuringiensis*. J. Bacteriol. 96:713-720.

- 1. Grow *B. thuringiensis* on medium (per liter ddH₂O: 8.0 g nutrient broth, 20.0 g agar, 0.08 g CaCl₂, 0.05 g MnCl₂4·H₂O, 0.005 g ZnSO₄·7H₂O, and 0.005 g CuSO₄·5H₂O) for 72 hr @ 30°C.
- 2. Scrape cultures from surface of petri dishes and suspend in 1 M NaCl-0.02 M potassium phosphate buffer (pH 7.0) containing 0.01% Triton X-100.
- 3. Filter suspension through cheesecloth to remove small pieces of agar and pellet spores and crystals through centrifugation.
- 4. Wash sediment repeatedly until A₂₆₀ of supernatant is negligible.
- 5. Wash particles once in 0.2 M NaCl-0.004 M phosphate buffer (pH 7.0)-0.01% Triton X-100 and once in 0.01% Triton X-100, then suspend in water.
- 6. Remove residual cells by extracting five times with 1.5 liters of Phase Mixture I of Sacks and Alderton.
- 7. Centrifuge and wash three times in 0.02 M phosphate buffer (pH 7.0)-0.01% Triton X-100.
- 8. Add suspension, in 182 ml of buffer, to cylindrical separatory funnel containing 105 g of a 20% (w/v) aqueous solution of sodium dextran sulfate 500, 13.2 g of solid PEG 6000, 3.3 ml of 3 M phosphate buffer (pH 7.0), and 7.5 g NaCl. After shaking to dissolve the solids, the volume is adjusted to 600 ml by adding a well-shaken solution of the same composition. Shake vigorously and place at 5°C for 30 min.
- 9. The mixture separates into two phases, an upper PEG-rich phase and a lower dextran-rich phase. Spores partition to the upper phase, crystals to the lower.
- 10. Draw off upper phase; centrifuge to remove spores. Add back to funnel and repeat extraction. Repeat a total of ten times.
- 11. Collect crystals from lower phase by centrifugation and wash five times in cold distilled water. Store at 5°C as suspensions in water.

DETECTION OF CRY AND CYT GENES BY PCR

The polymerase chain reaction (PCR) offers a powerful tool for detecting, characterizing, and isolating novel *cry* genes in *Bacillus thuringiensis* and other bacteria. The alternating blocks of conserved and variable nucleotides among *cry* genes make it possible to select primers to amplify entire gene subfamilies on the one hand or specific gene types on the other. Table 1 lists primer pairs from published studies, together with the spectrum of genes each amplifies and the sizes of the PCR products. Table 2 lists the DNA sequence for each primer. Please: these lists are planning tools only. Errors or omissions may have crept their way in, so it is essential that a researcher consult the primary references and the appropriate GenBank sequence files to confirm the exact DNA sequence required *before* synthesizing primers!

The primers may be used in several different ways. The primer pairs given should amplify the genes listed. *Triplex PCR* employs two general primers that amplify a family of genes, together with a third, more specific primer. The products of a triplex PCR reaction include both the family fragment and the specific fragment, if the specific gene type exists. *Exclusion PCR* makes use of a pair of family primers, plus a set of specific primers located internal to the family primers. If no other members of the gene family are found in the strain tested, then the specific primers will out-compete the family primers and the family fragment will be excluded from the PCR products. If at least one novel gene is present, however, the family primers alone will be able to amplify it, and the family fragment will appear in the products. Consult the references given after table 2 for detailed explanations and protocols for these strategies.

Table 1.	PCR primer	pairs and	the cry or	cyt genes	s they amplify

Direct	Reverse	Amplifies	Products (bp)	Direct	Reverse	Amplifies	Products (bp)
gral-cry1(d)	gral-cry1(r)	cry1	543-594	CJIIIcte 22	CJIIIA23	cry3A	285
CJI-1	CJI-2	cry1	272-290	Un3(d)	EE-3Ba(r)	cry3B	1103
Un1(d)	Un1(r)	cry1	274-277	CJIIIcte 22	CJIIIB24	cry3Ba	437
l(+)	l(-)	cry1	1500-1600	CJIIIcte 22	CJIIIC25	cry3Bb	535
IA's	l(-)	cry1A	1720	Un3(d)	EE-3C(r)	cry3C	461
Lep1A	Lep1B	cry1A	490	CJIIIcte 22	CJIIID27	cry3C	312
Lep2A	Lep2B	cry1A	908-986	Dip1A	Dip1B	cry4	797
CJ1	CJ2	cry1Aa,d	246	Un4(d)	Un4(r)	cry4	439
SB-1	U8-15c	cry1Aa	1500	EE-4A(d)	Un4(r)	cry4A	1529
IAa	l(-)	cry1Aa	1023	Dip2A	Dip2B	cry4A	1290
CJ4	CJ5	cry1Ab,c	216	EE-4B(d)	Un4(r)	cry4B	1951
IAb	l(-)	cry1Ab	940	gral-nem(d)	gral-nem(r)	cry5,12, 14, 21	474-489
SB-2	U3-18c	cry1Ab	858	VI(+)	VI(-)	cry6	587
IAc	l(-)	cry1Ac	1452	7/8(+)	7/8(-)	cry7, 8	1704
RB-19	U8-15c	cry1Ac	653	Un7,8(d)	Un7,8(r)	cry7, 8	420-423
CJ6	CJ7	cry1Ac	180	CJIIIcte 22	CJIIICg26	cry7	211
IAd	l(-)	cry1Ad	1057	EE-7Aa(d)	Un7,8(r)	cry7A	916
CJ3	CJ2	cry1Ad	171	gral-cry8(d)	gral-cry8(r)	cry8	373-376
IAe	l(-)	cry1Ae	1169	EE-8A(d)	Un7,8(r)	cry8A	679
IB	l(-)	cry1B	1063	spe-	spe-cry8A(r)	cry8A	338
CJ8	CJ9	cry1B	367	cry8A(d)	spe-ci yoA(i)	CIYOA	220
IC	l(-)	cry1C	1160	CJIIIE28	CJIIIE29	cry8A	394
CJ10	CJ11	cry1C	130	EE-8B(d)	Un7,8(r)	cry8B	775
ID	l(-)	cry1D	1126	spe-	spe-cry8B(r)	cry8B	510
CJ12	CJ13	cry1D	290	cry8B(d)	spe-ciyob(i)	CIYOD	510
IE	l(-)	cry1E	1155	spe-	spe-cry8C(r)	cry8C	963
CJ14	CJ15	cry1E	147	cry8C(d)	spe-ciyoc(i)	CIYOU	903
IF		cry1F	1302	EE-8C(d)	Un7,8(r)	cry8C	511
CJ16	l(-) CJ17	cry1F	1302	IG		cry9	1300
		cry11	587	CJ18	l(-) CJ19		1300
V(+) 13091/1	V(-) 05091/2		1124			cry9A cry9A	571
		cry1IA	1556	spe-	spe-cry9A(r)	CI Y9A	571
(+) =2(d)	ll(-)	cry2		cry9A(d)	c = c = c = c = c = c = c = c = c = c =	om/OD	402
Un2(d)	Un2(r)	cry2	689-701 694	spe-	spe-cry9B(r)	cry9B	402
IIA	ll(-)	cry2A		cry9B(d)		am (0.0	207
Un2(d)	EE-2Aa(r)	cry2Aa	498	spe-	spe-cry9C(r)	cry9C	306
Un2(d)	EE-2Ab(r)	cry2Ab	546	cry9C(d)		am .11	205
Un2(d)	EE-2Ac(r)	cry2Ac	725	gral-	gral-	cry11	305
IIB	ll(-)	cry2B	694	cry11(d)	cry11(r)		
CJIII20	CJIII21	cry3, 7, 8	652-733	EE-11A(d)	EE-11A(r)	cry11A	445
III(+)	III(-)	cry3	858	spe-	spe-cry13(r)	cry13	313
Un3(d)	Un3(r)	cry3	589-604	cry13(d)	CD 2		
Col2A	Col2B	cry3A, 3B	1060	DA5 _c	CR3 _c	cry16	1415
Un3(d)	EE-3Aa(r)	cry3A	951	OX7as	CR8	cry17	1400
Col1A	Col1B	cry3A	649	gral-cyt(d)	gral-cyt(r)	cyt1	522-525

36/Back to Table of Contents

Primer	Sequence (5'→3')	Ref	Primer	Sequence (5'→3')
05091/2	GCCGTCTAGAGGATCCTTGTGTTGAGATA	8	gral-cry11(r)	CATTIGTACTIGAAGTIGTAATCCC
13091/1	GCCGGAATTCAAGCTTATGAAACTAAAGAATCCAGA	8	gral-cry13(d)	CTITGATTATTTAGGTTTAGTTCAA
7/8(-)	YYTCTAAWYCYTGACTACTT	11	gral-cry13(r)	TTGTAGTACAGGCTTGTGATTC
7/8(+)	YCRDTTYCGYAGAGARATGA	11	gral-cry8(d)	ATGAGTCCAAATAATCTAAATG
CJ1	TTATACTIGGTICAGGCCC	6	gral-cry8(r)	TTTCATTAATGAGTTCTTCCACTCG
CJ10	AAAGATCTGGAACACCTTT	6	gral-cyt(d)	AACCCCTCAATCAACAGCAAGG
CJ11	CAAACTCTAAATCCTTTCAC	6	gral-cyt(r)	GGTACACAATACATAACGCCACC
CJ12	CTGCAGCAAGCTATCCAA	6	gral-nem(d)	TTACGTAAATTGGTCAATCAAGCAAA
CJ13	ATTTGAATTGTCAAGGCCTG	6	gral-nem(r)	AAGACCAAATTCAATACCAGGGTT
CJ14	GGAACCAAGACGAACTATTGC	7	l(-)	MDATYTCTAKRTCTTGACTA
CJ15	GGTTGAATGAACCCTACTCCC	7	l(+)	TRACRHTDDBDGTATTAGAT
CJ16	TGAGGATTCTCCAGTTTCTGC	7	IAa	TICCCTITATTIGGGAATGC
CJ17	CGGTTACCAGCCGTATTTCG	7	IAb	CGGATGCTCATAGAGGAGAA
CJ18	ATATGGAGTGAATAGGGCG	7	IAc	GGAAADTTTCTTTTTAATGG
CJ19	TGAACGGCGATTACATGC	7	IAd	ACCCGTACTGATCTCAACTA
CJ2	TTGGAGCTCTCAAGGTGTAA	6	IAe	CTCTACTTTTTATAGAAACC
CJ3	CAGCCGATTTACCTTCTA	6	IA's	CAATAGICGITATAAAGAAAGC
CJ4	AACAACTATCTGTTCTTGAC	6	II(-)	AACTCCATCGTTATTTGTAG
CJ5		6		
C16	CTCTTATTATACTTACACTAC	6	II(+) IIA	TAAAGAAAGTGGGGAGTCTT
	GTTAGATTAAATAGTAGTGG			
CJ7	TGTAGCTGGTACTGTATTG	6	IIB	TGATATAGGTGCATCTCCGT
C18	CTICATCACGATGGAGTAA	6	(-)	AASTKAGWKGTWGAAGCATA
CJ9	CATAATITGGTCGTTCTGTT	6	(+) / 2 2	AAACHGAAYTAACAAGAGAC
CJI-1	TGTAGAAGAGGAAGTCTATCCA	7	K3un2	GCTGTGACACGAAGGATATAGCCAC
CJI-2	TATCGGTTTCTGGGAAGTA	7	K3un3	CCTCCTGTAAATCCTGGTCCT
CJIII20	TTAACCGTTTTCGCAGAGA	7	K5un2	AGAACCAGGATTTACAGGAGG
CJIII21	TCCGCACTTCTATGTGTCCAAG	7	K5un3	CAATGCGTACCITACAATTGTTTAAGTAAT
CJIIIA23	CCCCGTCTAAACTGAGTGT	7	Lep1A	CCGGTGCTGGATTTGTGTTA
CJIIIB24	AACGAAAGATTCTGCTCC	7	Lep1B	AATCCCGTATTGTACCAGCG
CJIIIC25	CCTATICTITCATTITGACC	7	Lep2A	CCGAGAAAGTCAAACATGCG
CJIIICg26	AGTGGAGAGTTTACGGTAGCC	7	Lep2B	TACATGCCCTTTCACGTTCC
CJIIIcte 22	CAATCCCAGTGTTTACTTGGAC	7	OX7as	CTGAGGTATTTTGTGGA
CJIIID27	CGAAATACGAAATACTATGAG	7	RB-19	GGGACTGCAGGAGTGAT
CJIIIE28	TGACAAGTACTGGATTCTGCAA	7	SB-1	TGCATAGAGGCTTTAAT
CJIIIE29	GTTGTTGATGAGGTTCCCCTT	7	SB-2	TCGGAAAATGTGCCCAT
Col1A	GTCCGCTGTATATTCAGGTG	5	spe-cry8A(d)	ATGAGTCCAAATAATCTAAATG
Col1B	CACTTAATCCTGTGACGCCT	5	spe-cry8A(r)	TCTCCCCATATATCTACGCTC
Col2A	AGGTGCCAACTAACCATGTT	5	spe-cry8B(d)	ATGAGTCCAAATAATCTAAATG
Col2B	GATCCTATGCTTGGTCTAGT	5	spe-cry8B(r)	GAACATCTCGTAAGGCTC
CR3c	ATAAGCCCAATATCATG	1	spe-cry8C(d)	ATGAGTCCAAATAATCTAAATG
CR8	AAGTAAAGATTTCTGGG	1	spe-cry8C(r)	GGTACTCGATTGTCCAGT
DA5c	TCAAAAGGTGTGGCAAG	1	spe-cry9A(d)	ATGAGTCCAAATAATCTAAATG
Dip1A	CAAGCCGCAAATCTTGTGGA	5	spe-cry9A(r)	TCTCCCCATATATCTACGCTC
Dip1B	ATGGCTTGTTTCGCTACATC	5	spe-cry9B(d)	TCATTGGTATAAGAGTTGGTGATAGAC
Dip2A	GGTGCTTCCTATTCTTTGGC	5	spe-cry9B(r)	CCGCTTCCAATAACATCTTT
Dip2B	TGACCAGGICCCTIGATTAC	5	spe-cry9C(d)	CTGGTCCGTTCAATCC
EE-11A(d)	CCGAACCTACTATTGCGCCA	2	spe-cry9C(r)	CCGCTTCCAATAACATCTTT
EE-11A(r)	CTCCCTGCTAGGATTCCGTC	2	U3-18c	AATTGCTTTCATAGGCT
EE-2Aa(r)	GAGATTAGTCGCCCCTATGAG		U8-15c	CAGGATTCCATTCAAGG
EE-2Ab(r)	TGGCGTTAACAATGGGGGGGGAGAAAT	2	Un1(d)	CATGATTCATGCGGCAGATAAAC
EE-2Ac(r)	GCGTTGCTAATAGTCCCCAACAACA	2	Un1(r)	TIGTGACACTICIGCTICCCATT
EE-3Aa(r)	TGGTGCCCCGTCTAAACTGAGTGT	2	Un2(d)	GTTATTCTTAATGCAGATGAATGGG
		2		
EE-3Ba(r)	ACGAAAGATTCTGCTCCTAT	2	Un2(r)	CGGATAAAATAATCTGGGAAATAGT
EE-3C(r)	ATTITGGTACCTCCTGTACCCACC	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	Un3(d)	CGTTATCGCAGAGAGAGAGACATTAAC
EE-4A(d)	GGGTATGGCACTCAACCCCACTT	2	Un3(r)	CATCTGTTGTTTCTGGAGGCAAT
EE-4B(d)	GAGAACACCTAATCAACCAACT	2	Un4(d)	GCATATGATGTAGCGAAACAAGCC
EE-7Aa(d)	GCGGAGTATTACAATAGAATCTATCC	2	Un4(r)	GCGTGACATACCCATTTCCAGGTCC
EE-8A(d)	GAATTTACTCTATACCTTGGCGAC	2	Un7,8(d)	AAGCAGTGAATGCCTTGTTTAC
EE-8B(d)	GACCGCATCGGAAGTTGTGAG	2	Un7,8(r)	CTTCTAAACCTTGACTACTT
EE-8C(d)	GGTGCTGCTAACCTTTATATTGATAG	2	V(-)	AGGATCCTTGTGTTGAGATA
gral-cry1(d)	CTGGATTTACAGGTGGGGGATAT	4	V(+)	ATGAAACTAAAGAATCCAGA
gral-cry1(r)	TGAGTCGCTTCGCATATTTGACT	4	VI(-)	TRAATYCTATTRAACAATCCTA
		4	VI(+)	TAYGGTTTTAAAKKTGCTGG

Table 2. Sequences of the PCR primers in Table 1.

Note: For degenerate primers, B=C+G+ T; D=A+G+T; H=A+C+T; K=G+T; M=A+C; R=A+G; Y=T+C

Ref

PCR References

- 1. Barloy, F., M.-M. Lecadet, and A. Delécluse. 1998. Distribution of Clostridial *cry*-like genes among *Bacillus thuringiensis* and *Clostridium* strains. Curr. Microbiol. 36:232-237.
- 2. Ben-Dov, E., A. Zaritsky, E. Dahan, Z. Barak, R. Sinai, R. Manasherob, A. Khamraev, E. Troitskaya, A. Dubitsky, N. Berezina, and Y. Margalith. 1997. Extended screening by PCR for seven *cry*-group genes from field-collected strains of *Bacillus thuringiensis*. Appl. Environ. Microbiol. **63**:4883-4890.
- 3. Bourque, S. N., J. R. Valéro, J. Mercier, M. C. Lavoie, and R. C. Levesque. 1993. Multiplex polymerase chain reaction for detection and differentialtion of the microbial insecticide *Bacillus thuringiensis*. Appl. Environ. Microbiol. **59**:523-527.
- 4. Bravo, A., S. Sarabia, L. Lopez, H. Oniveros, C. Abarca, A. Ortiz, M. Ortiz, L. Lina, F. J. Villalobos, G. Peña, M.-E. Nuñez-Valdez, M. Soberón, and R. Qunitero. 1998. Characterization of *cry* genes in a Mexican *Bacillus thuringiensis* strain collection. Appl. Environ. Microbiol. 64:4965-4972.
- 5. Carozzi, N. B., V. C. Kramer, G. W. Warren, S. Evola, and M. G. Koziel. 1991. Prediction of insecticidal activity of *Bacillus thuringiensis* strains by polymerase chain reaction product profiles. Appl. Environ. Microbiol. **57**:3057-3061.
- 6. Cerón, J., L. Covarrubias, R. Quintero, A. Ortíz, M. Ortíz, E. Aranda, L. Lina, and A. Bravo. 1994. PCR analysis of the *cryl* insecticidal crystal family genes from *Bacillus thuringiensis*. Appl. Environ. Microbiol. **60**:353-356.
- 7. Cerón, J., A. Ortíz, R. Quintero, L. Güereca, and A. Bravo. 1995. Specific PCR primers directed to identify cryl and crylll genes within a *Bacillus thuringiensis* strain collection. Appl. Environ. Microbiol. 61:3826-3831.
- 8. Gleave, A. P., R. Williams, and R. J. Hedges. 1993. Screening by polymerase chain reaction of *Bacillus thuringiensis* serotypes for the presence of *cryV*-like insecticidal protein genes and characterization of a *cryV* gene cloned from *B. thuringiensis* subsp. *kurstaki*. Appl. Environ. Microbiol. **59**:1683-1687.
- 9. Juárez-Pérez, V. M., M. D. Ferrandis, and R. Frutos. 1997. PCR-based approach for detection of novel *Bacillus thuringiensis cry* genes. Appl. Environ. Microbiol. 63:2997-3002.
- 10. **Kuo**, **W.-S.**, and **K. F. Chak**. 1996. Identification of novel *cry* type genes from *Bacillus thuringiensis* strains on the basis of restriction fragment length polymorphism of the PCR-amplified DNA. Appl. Environ. Microbiol. **62**:1369-1377.
- 11. Masson, L., M. Erlandson, M. Puzstai-Carey, R. Brousseau, and Juárez-Peréz. 1998. A holistic approach for determining the entomopathogenic potential of *Bacillus thuringiensis* strains. Appl. Microbiol. Environ. **64**:4782-4788.

NOMENCLATURE FOR CRY AND CYT PROTEINS

The Cry and Cyt proteins of B. thuringiensis and related bacteria are named by a logical set of rules developed by the Cry Nomenclature Committee, a standing committee of the Bacillus Genetic Stock Center. Each protein name consists of the mnemonic "Cry" or "Cyt" with four characters appended--an Arabic numeral, an uppercase letter, a lowercase letter, and another Arabic numeral, e.g. Cry1Aa1. All proteins sharing the first numeral in their names share at least 45% amino acid identity with other members of the group. Proteins sharing both the first numeral and the uppercase letter share at least 75% identity. Proteins sharing the same first numeral, uppercase, and lowercase letters share at least 95% identity. A phylogram showing the relative amino acid identity of the aligned Cry and Cyt sequences appears on page. The table beginning below lists all sequences that have received official names as of April 1999. Only sequences deposited in public databases are eligible to receive names. In addition, a protein must satisfy at least one of the two following criteria: (1) It must display significant homology to known Cry or Cyt proteins or (2) must be accumulated in a crystal and have a demonstrated toxic effect to a target organism. A much more thorough explanation of the nomenclature system can be found in Crickmore et al. 1998. Microbiol. Mol. Biol. Rev. 62:807-813. An up-to-date listing of genes can be found on Neil Crickmore's web site at the following URL: <u>http://www.biols.susx.ac.uk/Home/Neil_Crickmore/Bt/</u>. If you have a predicted sequence encoding a protein you wish named, please contact Dan Zeigler at zeigler.1@osu.edu.

NAME	ORIGINAL	ACCESSION NUMBER(S)	CODING REGION	REF.
Cry1Aa1	CrylA(a)	M11250	527 4054	100
Cry1Aa2	CrylA(a)	M10917, E00881	153 >2955	106
Cry1Aa3	CrylA(a)	D00348, E01529, E01601	73 3600	107
Cry1Aa4	CrylA(a)	X13535	1 3528	65
Cry1Aa5	CrylA(a)	D17518, E01217	81 3608	121
Cry1Aa6	CrylA(a)	U43605	1 >1860	66
Cry1Aa7	CrylA(a)	AF081790		78
Cry1Aa8	CrylA(a)	126149	148 3675	63
Cry1Ab1	CrylA(b)	M13898	142 3606	127
Cry1Ab2	CrylA(b)	M12661	155 3622	119
Cry1Ab3	CrylA(b)	M15271, A03793, A09398	156 3620	33
Cry1Ab4	CrylA(b)	D00117, E01218	163 3627	52
Cry1Ab5	CrylA(b)	X04698, I24776	141 3605	43
Cry1Ab6	CrylA(b)	M37263	73 3537	40
Cry1Ab7	CrylA(b)	X13233, X16315	1 3465	39
Cry1Ab8	CryIA(b)	M16463, E01173, E01279, E01308, E01600	157 3621	74
Cry1Ab9	CryIA(b)	X54939	73 3537	13
Cry1Ab10	CrylA(b)	A29125	Peptide sequence	30
Cry1Ab11	CrylA(b)	112419		28
Cry1Ab12	CrylA(b)	AF059670	41 3505	111
Cry1Ac1	CrylA(c)	M11068	388 3921	4
Cry1Ac2	CrylA(c)	M35524	239 3769	125
Cry1Ac3	CrylA(c)	X54159	339 >2192	18
Cry1Ac4	CrylA(c)	M73249	1 3534	93
Cry1Ac5	CrylA(c)	M73248	1 3531	92
Cry1Ac6	CrylA(c)	U43606	1 >1821	66
Cry1Ac7	CrylA(c)	U87793	976 4509	41
Cry1Ac8	CrylA(c)	U87397	153 3686	76
Cry1Ac9	CrylA(c)	U89872	388 3921	35
Cry1Ac10	CrylA(c)	AJ002514	388 3921	116
Cry1Ac11	CrylA(c)	AJ130970	156 3689	64
Cry1Ac12	CrylA(c)	112418	81 >2990	28
Cry1Ad1	CrylA(d)	M73250, I76414, I76775	1 3537	88
Cry1Ad2	CrylA(d)	A27531	1 3537	1
Cry1Ae1	CrylA(e)	M65252	81 3623	61
Cry1Af1	icp	U82003	172 >2905	50
Cry1Ag1	•	AF081248		78
Cry1Ba1	CrylB	X06711	1 3684	10
Cry1Ba2	CrylB	X95704	186 3869	113
Cry1Bb1	ET5	L32020, I38760, I70138	67 3753	26
Cry1Bc1	CrylB(c)	Z46442	141 3839	7

NAME	ORIGINAL	ACCESSION NUMBER(S)	CODING REGION	REF.
Cry1Bd1	CryE1	U70726	842 4534	12
Cry1Be1		AF077326, 190319, 190731	1 3681	80
Cry1Ca1	CrylC	X07518	47 3613	46
Cry1Ca2	CrylC	X13620, A10218	241 >2711	97
Cry1Ca3	CrylC	M73251, I76416, I76777	1 3570	88
Cry1Ca4	CrylC	A27642	234 3800	122
Cry1Ca5	CrylC	X96682	1 >2268	115
Cry1Ca6	CryIC	X96683	1 >2268	115
Cry1Ca7	CryIC	X96684	1 >2268	115
Cry1Cb1	CryIC(b)	M97880, 183311	296 3823 264 3758	49 45
Cry1Da1 Cry1Da2	CryID	X54160, A15537, A27640	264 3758 1 3495	45 82
Cry1Db1	prtB	176776, 176415 Z22511	241 3720	62 57
Cry1Ea1	CrylE	X53985	130 3642	123
Cry1Ea2	CrylE	X56144	1 3513	8
Cry1Ea3	CrylE	M73252, 115489, 115490, 121415, 121416	1 3513	91
Cry1Ea4	CIVIL	U94323	388 3900	48
Cry1Ea5		A15535	54 3566	9
Cry1Eb1	CrylE(b)	M73253, A27529, I73894	1 3522	90
Cry1Fa1	CrylF	M63897, I76417	478 3999	14
Cry1Fa2	CrylF	M73254, 176778	1 3525	89
Cry1Fb1	prtD	Z22512	483 4004	57
Cry1Fb2	CryINA67-1	AB012288	1 3780	67
Cry1Fb3	-	AF062350		114
Cry1Fb4		173895		83
Cry1Ga1	prtA	Z22510	67 3564	57
Cry1Ga2	CrylM	Y09326	692 4210	104
Cry1Gb1	CryH2	U70725	532 4038	12
Cry1Ha1	prtC	Z22513	530 4045	57
Cry1Hb1		U35780	728 4195	55
Cry1la1	CryV	X62821	355 2511	117
Cry1la2	CryV	M98544	1 2157	36
Cry1la3	CryV	L36338	279 2435	108
Cry1la4	CryV	L49391	61 2217 524 2680	56
Cry1la5 Cry1la6	CryV159 CryV101	Y08920 AF076953	524 2680 1 2160	102 137
Cry1lb1	CryV465	U07642	237 2393	108
Cry1lc1	CI y V40J	AF056933	1 2160	79
Cry1Ja1	ET4	L32019, I38759, I70137	99 3519	26
Cry1Jb1	ET1	U31527	177 3686	124
Cry1Jc		190318, 190730		80
Cry1Ka1		U28801	451 4098	54
Cry2Aa1	CryllA	M31738	156 2054	20
Cry2Aa2	CryllA	M23723	1840 3738	131
Cry2Aa3	-	D86064	2007 3911	98
Cry2Aa4		AF047038	10 1908	71
Cry2Aa5		AJ132464	<1 1860	135
Cry2Aa6		AJ132465	<1 1860	135
Cry2Aa7		AJ132463	<1 >1611	135
Cry2Ab1	CryllB	M23724	1 1899	131
Cry2Ab2	CryllB	X55416	874 2775	17
Cry2Ac1	CryIIC	X57252	2125 3990	133
Cry3Aa1	CryIIIA	M22472, 101210, 102147	25 1956	42
Cry3Aa2	CryIIIA	J02978	241 2172	101
Cry3Aa3	CryIIIA	Y00420	566 2497	44
Cry3Aa4 Cry3Aa5	CrylllA CrylllA	M30503 M37207	201 2132 569 2500	68 23
Cry3Aa6	CryIIIA	U10985	569 2500	23
Cry3Ba1	CryIIIB2	X17123, I25973	25 >1977	109
Cry3Ba2	CryIIIB	A07234	342 2297	94
Cry3Bb1	CrylliBb	M89794	202 2157	25
Cry3Bb2	CryIIIC(b)	U31633	144 2099	24
Cry3Bb3		115475	<1 >1291	95
Cry3Ca1	CryIIID	X59797, 115474, 190312	232 2178	60
Cry4Aa1	CryIVA	Y00423	1 3540	129
Cry4Aa2	CryIVA	D00248, E01676	393 3935	103
-				

NAME	ORIGINAL	ACCESSION NUMBER(S)	CODING REGION	F
Cry4Ba1	CryIVB	X07423, X05692	157 3564	
Cry4Ba2	CryIVB	X07082	151 3558	
Cry4Ba3	CryIVB	M20242	526 3930	
Cry4Ba4	CryIVB	D00247, E01905	461 3865	
Cry5Aa1	CryVA(a)	L07025	1 >4155	
Cry5Ab1	CryVA(b)	L07026	1 >3867	
Cry5Ac1		134543	1 >3660	
	PS86Q3		1 >3735	
Cry5Ba1	-	U19725, I34523		
Cry6Aa1	CryVIA	L07022, 113734, 115529	1 >1425	
Cry6Ba1	CryVIB	L07024, 113735	1 >1185	
Cry7Aa1	CryIIIC	M64478, A07236	184 3597	
Cry7Ab1	CryIIIC(b)	U04367	1 >3414	
Cry7Ab2	CryIIIC(c)	U04368	1 >3414	
Cry8Aa1	CryIIIE	U04364, I25971	1 >3471	
Cry8Ba1	CryIIIG	U04365, I25972	1 >3507	
Cry8Ca1	CryIIIF	U04366	1 3447	
Cry9Aa1	CrylG	X58120	5807 9274	
Cry9Aa2	CryIG	X58534	385 >3837	
Cry9Ba1	CryX	X75019	26 3488	
Cry9Ca1	CrylH	Z37527	2096 5569	
Cry9Da1	N141	D85560	47 3553	
Cry9Da1	11141		<1 >1937	
		AF042733		
Cry9Ea1		AB011496	211 3660	
Cry9-like	c 11/ c	AF093107	<1 >1917	
Cry10Aa1	CryIVC	M12662	941 2965	
Cry11Aa1	CryIVD	M31737	41 1969	
Cry11Aa2	CryIVD	M22860	<1 235	
Cry11Ba1	jeg80	X86902, A49087,	64 2238	
Cry11Bb1	94 kDa	AF017416	97 2346	
Cry12Aa1	CryVB	L07027	1 >3771	
Cry13Aa1	CryVC	L07023	1 2409	
Cry14Aa1	CryVD	U13955	1 3558	
Cry15Aa1	34kDa	M76442	1036 2055	
Cry16Aa1	cbm71	X94146	158 1996	
Cry17Aa1	cbm72	X99478	12 1865	
Cry18Aa1	CryBP1	X99049	743 2860	
Cry19Aa1		Y07603	743 2662	
	Jeg65			
Cry19Ba1	0(1.D.	D88381	626 2671	
Cry20Aa1	86kDa	U82518	60 2318	
Cry21Aa1		132932	1 3501	
Cry21Aa2		166477	1 3501	
Cry22Aa1		134547	1 2169	
Cry23Aa1	CryET33	AF038048		
Cry24Aa1		U88188	1 2022	
Cry25Aa1		U88189	1 2028	
Cry26Aa1		AF122897		
Cry27Aa1		AB023293		
Cry28Aa1		AF132928		
Cyt1Aa1	CytA	X03182	140 886	
Cyt1Aa2	CytA	X04338	509 1255	
Cyt1Aa3	CytA	Y00135	36 782	
Cyt1Aa4	CytA	M35968	67 813	
Cyt1Ab1	CytM	X98793	28 777	
Cyt1Ba1	C. 4D	U37196, I17395, I44773, I90047	1 795	
Cyt2Aa1	CytB	Z14147	270 1046	
Cyt2Ba1	"CytB"	U52043	287 655	
Cyt2Ba2		AF020789	<1 >469	
Cyt2Ba3		AF022884	<1 >469	
Cyt2Ba4		AF022885	<1 >469	
Cyt2Ba5		AF022886	<1 >471	
Cyt2Ba6		AF034926	<1 >472	
		U82519	416 1204	

REFERENCES

- 1. -- 1992. AU patent 632335.
- 2. Adams, L. F., S. Mathewes, P. O'Hara, A. Petersen, and H. Gürtler. 1994. Elucidation of the mechanism of *cry*IIIA overproduction in a mutagenized strain of *Bacillus thuringiensis* var. *tenebrionis*. Mol. Microbiol. 14:381-389.
- 3. Adams, L. F., J. E. Visick, and H. R. Whiteley. 1989. A 20-kilodalton protein is required for efficient production of the *Bacillus thuringiensis* subsp. *israelensis* 27-kilodalton crystal protein in *Escherichia coli*. J. Bacteriol. 171:521-530.
- 4. Adang, M. J., M. J. Staver, T. A. Rocheleau, J. Leighton, R. F. Barker, and D. V. Thompson. 1985. Characterized full-length and truncated plasmid clones of the crystal protein of *Bacillus thuringiensis* subsp. *kurstaki* HD-73 and their toxicity to *Manduca sexta*. Gene. 36:289-300.
- 5. Asano, S. I., Y. Nukumizu, H. Bando, T. lizuka, and T. Yamamoto. 1997. Cloning of novel enterotoxin genes from *Bacillus cereus* and *Bacillus thuringiensis*. Appl. Environ. Microbiol. 63:1054-1057.
- 6. Barloy, F. 1997.
- 7. Bishop, A. H. 1994.
- 8. Bossé, M., L. Masson, and R. Brousseau. 1990. Nucleotide sequence of a novel crystal protein gene isolated from *Bacillus thuringiensis* subspecies *kenyae*. Nucl. Acids. Res. 18:7443.
- 9. Botterman, J., M. Peferoen, H. Hofte, and H. Joos. April 5, 1995 1995. EP patent 0358557.
- 10. Brizzard, B. L., and H. R. Whiteley. 1988. Nucleotide sequence of an additional crystal protein gene cloned from *Bacillus thuringiensis* subsp. *thuringiensis*. Nucl. Acids Res. 16:2723-2724.
- 11. **Brown, K. L., and H. R. Whiteley**. 1992. Molecular characterization of two novel crystal protein genes from *Bacillus thuringiensis* subsp. *thompsoni*. J. Bacteriol. **174**:549-557.
- 12. Chak, K. F. 1996. Unpublished observation.
- 13. Chak, K. F., and J. C. Chen. 1993. Complete nucleotide sequence and identification of a putative promoter region for the expression in *Escherichia coli* of the *crylA(b)* gene from *Bacillus thuringiensis* var. *aizawai* HD133. Proc. Natl. Sci. Counc. Repub. China. 17:7-14.
- 14. Chambers, J. A., A. Jelen, M. P. Gilbert, C. S. Jany, T. B. Johnson, and C. Gawron-Burke. 1991. Isolation and characterization of a novel insecticidal crystal protein gene from *Bacillus thuringiensis* subsp. *aizawai*. J. Bacteriol. **173**:3966-3976.
- Cheong, H., and S. S. Gill. 1997. Cloning and characterization of a cytolytic and mosquitocidal δ-endotoxin from *Bacillus thuringiensis* subsp. *jegathesan*. Appl. Environ. Microbiol. 63:3254-3260.
- 16. Chungjatupornchai, W., H. Höfte, J. Seurinck, C. Angsuthanasombat, and M. Vaeck. 1988. Common features of *Bacillus thuringiensis* toxins specific for *Diptera* and *Lepidoptera*. Eur. J. Biochem. 173:9-16.
- 17. Dankocsik, C., W. P. Donovan, and C. S. Jany. 1990. Activation of a cryptic crystal protein gene of *Bacillus thuringiensis* subspecies *kurstaki* by gene fusion and determination of the crystal protein insecticidal specificity. Mol. Microbiol. 4:2087-2094.
- 18. Dardenne, F., J. Seurinck, B. Lambert, and M. Peferoen. 1990. Nucleotide sequence and deduced amino acid sequence of a *cryIA(c)* gene variant from *Bacillus thuringiensis*. Nucl. Acids Res. 18:5546.
- 19. Delécluse, A., M.-L. Rosso, and A. Ragni. 1995. Cloning and expression of a novel toxin gene from *Bacillus thuringiensis* subsp. *jegathesan* encoding a highly mosquitocidal protein. Appl. Environ. Microbiol. **61**:4230-4235.
- 20. Donovan, W. P. 1989. Correction. J. Biol. Chem. 264:4740.
- 21. Donovan, W. P., C. Dankocsik, and M. P. Gilbert. 1988. Molecular characterization of a gene encoding a 72-kilodalton mosquito-toxic crystal protein from *Bacillus thuringiensis* subsp. *israelensis*. J. Bacteriol. **170**:4732-4738.
- 22. Donovan, W. P., J. C. Donovan, and A. C. Slaney. 1997 patent WO9813498A1.

- 23. Donovan, W. P., J. M. González, Jr., M. P. Gilbert, and C. Dankocsik. 1988. Isolation and characterization of EG2158, a new strain of *Bacillus thuringiensis* toxic to coleopteran larvae, and nucleotide sequence of the toxin gene. Mol. Gen. Genet. 214:365-372.
- 24. Donovan, W. P., M. J. Rupar, and A. C. Slaney. 1995. US patent 5,378,625.
- 25. Donovan, W. P., M. J. Rupar, A. C. Slaney, T. Malvar, M. C. Gawron-Burke, and T. B. Johnson. 1992. Characterization of two genes encoding *Bacillus thuringiensis* insecticidal crystal proteins toxic to *Coleoptera* species. Appl. Environ. Microbiol. 58:3921-3927.
- 26. Donovan, W. P., Y. Tan, C. S. Jany, and J. M. González, Jr. 1994 patent 5,322,687.
- 27. Earp, D. J., and D. J. Ellar. 1987. *Bacillus thuringiensis* var. *morrisoni* strain PG14: nucleotide sequence of a gene encoding a 27 kDa crystal protein. Nucl. Acids Res. 15:3619.
- 28. Ely, S., and J. M. Tippett. June 13, 1995 1995. US patent 5424409.
- 29. Feitelson, J. S. Sept. 23, 1997 1997. US patent 5670365.
- Fischhoff, D. A., K. S. Bowdisch, F. J. Perlak, P. G. Marrone, S. H. McCormick, J. G. Niedermeyer, D. A. Dean, K. Kusano-Kretzmer, E. J. Mayer, D. E. Rochester, S. G. Rogers, and R. T. Fraley. 1987. Insect tolerant transgenic tomato plants. Bio/Technology. 5:807-813.
- 31. Foncerrada, L., A. J. Sick, and J. M. Payne. 1992 patent EP 0 498537.
- 32. Galjart, N. J., N. Sivasubramanian, and B. A. Federici. 1987. Plasmid location, cloning and sequence analysis of the gene encoding a 23-kilodalton cytolytic protein from *Bacillus thuringiensis* subsp. *morrisoni* (PG-14). Curr. Microbiol. 16:171-177.
- 33. Geiser, M., S. Schweitzer, and C. Grimm. 1986. The hypervariable region in the genes coding for entomopathogenic crystal proteins of *Bacillus thuringiensis*: nucleotide sequence of the kurhd1 gene of subsp. *kurstaki* HD1. Gene. **48**:109-118.
- 34. Gleave, A. P., R. J. Hedges, and A. H. Broadwell. 1992. Identification of an insecticidal crystal protein from *Bacillus thuringiensis* DSIR517 with significant sequence differences from previously described toxins. J. Gen. Microbiol. **138**:55-62.
- 35. Gleave, A. P., R. J. Hedges, A. H. Broadwell, and P. J. Wigley. 1992. Cloning and nucleotide sequence of an insecticidal crystal protein gene from *Bacillus thuringiensis* DSIR732 active against three species of leafroller Lepidoptera *Tortricidae*. New Zealand J. Crop Hort. Sci. 20:27-36.
- 36. Gleave, A. P., R. Williams, and R. J. Hedges. 1993. Screening by polymerase chain reaction of *Bacillus thuringiensis* serotypes for the presence of *cryV*-like insecticidal protein genes and characterization of a *cryV* gene cloned from *B. thuringiensis* subsp. *kurstaki*. Appl. Environ. Microbiol. **59**:1683-1687.
- 37. Guerchicoff, A., R. A. Ugalde, and C. P. Rubinstein. 1997.
- 38. Guerchicoff, A., R. U. Ugalde, and C. P. Rubinstein. 1997. Identification and characterization of a previously undescribed *cyt* gene in *Bacillus thuringiensis* subsp. *israelensis*. Appl. Environ. Microbiol. 63:2716-2721.
- 39. Haider, M. Z., and D. J. Ellar. 1988. Nucleotide sequence of a *Bacillus thuringiensis aizawai* ICI entomocidal crystal protein gene. Nucl. Acids Res. 16:10927.
- 40. Hefford, M. A., R. Brousseau, G. Préfontaine, Z. Hanna, J. A. Condie, and P. C. K. Lau. 1987. Sequence of a lepidopteran toxin gene of *Bacillus thuringiensis* subsp. *kurstaki* NRD-12. J. Biotechnol. 6:307-322.
- 41. Herrera, G., S. J. Snyman, and J. A. Thomson. 1994. Construction of a bioinsecticidal strain of *Pseudomonas flourescens* active against the sugarcane borer, *Eldana saccharina*. Appl. Environ. Microbiol. **60**:682-690.
- 42. Herrnstadt, C., T. E. Gilroy, D. A. Sobieski, B. D. Bennett, and F. H. Gaertner. 1987. Nucleotide sequence and deduced amino acid sequence of a coleopteran-active deltaendotoxin gene from *Bacillus thuringiensis* subsp. *san diego*. Gene. **57**:37-46.
- 43. Höfte, H., H. de Greve, J. Seurinck, S. Jansens, J. Mahillon, C. Ampe, J. Vandekerckhove, M. van Montagu, M. Zabeau, and M. Vaeck. 1986. Structural and functional analysis of a cloned delta endotoxin of *Bacillus thuringiensis berliner* 1715. Eur. J. Biochem. 161:273-280.

- 44. Höfte, H., J. Seurinck, A. Van Houtven, and M. Vaeck. 1987. Nucleotide sequence of a gene encoding an insecticidal protein of *Bacillus thuringiensis* var. *tenebrionis* toxic against Coleoptera. Nucl. Acids Res. 15:7183.
- 45. Höfte, H., P. Soetaert, S. Jansens, and M. Peferoen. 1990. Nucleotide sequence and deduced amino acid sequence of a new Lepidoptera-specific crystal protein gene from *Bacillus thuringiensis*. Nucl. Acids Res. 18:5545.
- 46. Honée, G., T. van der Salm, and B. Visser. 1988. Nucleotide sequence of crystal protein gene isolated from *B. thuringiensis* subspecies *entomocidus* 60.5 coding for a toxin highly active against *Spodoptera* species. Nucl. Acids Res. 16:6240.
- 47. Hwang, S.-H., H. Saitoh, E. Mizuki, K. Higuchi, and M. Ohba. 1998. A novel class of mosquitocidal δ-endotoxin, *cry*19B, encoded by a *Bacillus thuringiensis* serovar *higo* gene. Sytem. Appl. Microbiol. 21:179-184.
- 48. Ibarra, J. 1997. Unpublished observation.
- 49. Kalman, S., K. L. Kiehne, J. L. Libs, and T. Yamamoto. 1993. Cloning of a novel crylCtype gene from a strain of *Bacillus thuringiensis* subsp. *galleriae*. Appl. Environ. Microbiol. 59:1131-1137.
- 50. Kang, S. K., H. S. Kim, and Y. M. Yu. 1997. Partial crystal protein gene sequence of *Bacillus thuringiensis* NT0423 isolated from soil in Korea.
- 51. Kawalek, M. D., and S. S. Gill. 1998. Unpublished observation.
- 52. Kondo, S., N. Tamura, A. Kunitate, M. Hattori, A. Akashi, and I. Ohmori. 1987. Cloning and nucleotide sequencing of two insecticidal δ-endotoxin genes from *Bacillus thuringiensis* var. *kurstaki* HD-1 DNA. Agric. Biol. Chem. **51**(2):455-463.
- 53. Koni, P. A., and D. J. Ellar. 1993. Cloning and characterization of a novel *Bacillus thuringiensis* cytolytic delta-endotoxin. J. Mol. Biol. 229:319-327.
- 54. Koo, B. T. 1995. Unpublished observation.
- 55. Koo, B. T., S. H. Park, S. K. Choi, B. S. Shin, J. I. Kim, and J. H. Yu. 1995. Cloning of a novel crystal protein gene *cry1K* from *Bacillus thuringiensis* subsp *morrisoni*. FEMS Microbiol. Lett. 134:159-164.
- 56. Kostichka, K., G. W. Warren, M. Mullins, A. D. Mullins, J. A. Craig, M. G. Koziel, and J. J. Estruch. 1996. Cloning of a *cryV*-type insecticidal protein gene from *Bacillus thuringiensis*: the *cryV*-encoded protein is expressed early in stationary phase. J. Bacteriol. **178**:2141-2144.
- 57. Lambert, B. 1993. Unpublished observation.
- 58. Lambert, B., L. Buysse, C. Decock, S. Jansens, C. Piens, B. Saey, J. Seurinck, K. Van Audenhove, J. Van Rie, A. Van Vliet, and M. Peferoen. 1996. A *Bacillus thuringiensis* insecticidal protein with a high activity against members of the family Noctuidae. Appl. Environ. Microbiol. 62:80-86.
- 59. Lambert, B., H. Höfte, K. Annys, S. Jansens, P. Soetaert, and M. Peferoen. 1992. Novel *Bacillus thuringiensis* insecticidal crystal protein with a silent activity against coleopteran larvae. Appl. Environ. Microbiol. 58:2536-2542.
- 60. Lambert, B., W. Theunis, R. Agouda, K. Van Audenhove, D. C., S. Jansens, J. Seurinck, and M. Peferoen. 1992. Nucleotide sequence of gene *cryIIID* encoding a novel coleopteran-active crystal protein from strain BTI109P of *Bacillus thuringiensis* subsp. *kurstaki*. Gene. **110**:131-132.
- 61. Lee, C.-S., and A. I. Aronson. 1991. Cloning and analysis of δ-endotoxin genes from *Bacillus thuringiensis* subsp. *alesti.* J. Bacteriol. **173**:6635-6638.
- 62. Lee, H. K., and S. S. Gill. 1997. Molecular cloning and characterization of a novel mosquitocidal protein gene from *Bacillus thuringiensis* subsp. *fukuokaensis*. Appl. Environ. Microbiol. 63:4664-4670.
- 63. Liu, C.-L. 1996. US patent 5,556,784.
- 64. Makhdoom, R., and S. Riazuddin. 1998. Sequence of a novel gene from a variant of *Bacillus thuringiensis*.
- 65. Masson, L., P. Marcotte, G. Préfontaine, and R. Brousseau. 1989. Nucleotide sequence of a gene cloned from *Bacillus thuringiensis* subspecies *entomocidus* coding for an insecticidal protein toxic for *Bombyx mori*. Nucl. Acids Res. **17**:446.

- 66. Masson, L., A. Mazza, L. Gringorten, D. Baines, V. Aneliunas, and R. Brousseau. 1994. Specificity domain localization of *Bacillus thuringiensis* insecticidal toxins is highly dependent on the bioassay system. Mol. Microbiol. 14:851-860.
- 67. Masuda, K., and S. Asano. 1998. Unpublished observation.
- 68. McPherson, S. A., F. J. Perlak, R. L. Fuchs, P. G. Marrone, P. B. Lavrik, and D. A. Fischhoff. 1988. Characterization of the coleopteran-specific protein gene of *Bacillus* thuringiensis var. tenebrionis. Bio/Technology. 6:61-66.
- 69. Michaels, T. E., K. E. Narva, and L. Foncerrada. 1993 patent WO 93/15206.
- 70. Midoh, N., and K. Oyama. 1998. Unpublished observation.
- 71. Misra, H. S., N. P. Khairnar, M. Mathur, R. J. Donnelly, and S. K. Mahajan. 1998.
- 72. Narva, K. E., J. M. Payne, G. E. Schwab, L. A. Hickle, T. Galasan, and A. J. Sick. 1991 patent EP 0 462721.
- 73. Narva, K. E., G. E. Schwab, T. Galasan, and J. M. Payne. 1993 patent 5,236,843.
- 74. Oeda, K., K. Oshie, M. Shimizu, K. Nakamura, H. Yamamoto, I. Nakayama, and H. Ohkawa. 1987. Nucleotide sequence of the insecticidal protein gene of *Bacillus* thuringiensis strain aizawai IPL7 and its high-level expression in *Escherichia coli*. Gene. 53:113-119.
- 75. Ogiwara, K., H. Hori, M. Minami, K. Takeuchi, R. Sato, M. Ohba, and H. Iwahana. 1995. Nucleotide sequence of the gene encoding novel delta-endotoxin from *Bacillus thuringiensis* serovar *japonensis* strain Buibui specific to scarabaeid beetles. Curr. Microbiol. **30**:227-235.
- 76. Omolo, E. O., J. M. D., O. E. O., and J. A. Thomson. 1997. Cloning and expression of a *Bacillus thuringiensis* (L1-2) gene encoding a crystal protein active against *Glossina* morsitans morsitans and *Chilo partellus*. Curr. Microbiol. **34**:118-121.
- 77. Orduz, S. Unpublished observation.
- 78. Osman, Y. A. 1998. Unpublished observation.
- 79. Osman, Y. A., M. A. Madkour, and L. A. Bulla, Jr. 1998.
- 80. Payne, J., D. Cummings, R. Cannon, K. Narva, and S. Stelman. March 3, 1998 1998. US patent 5,723,758.
- 81. Payne, J., K. E. Narva, and J. Fu. 1996. US patent 5,589,382.
- 82. Payne, J., and A. J. Sick. 1997. US patent 5,691,308.
- 83. Payne, J., A. J. Sick, K. E. Narva, H. E. Schnepf, and G. E. Schwab. 1997. US patent 5,686,069.
- 84. Payne, J. M., and J. M. Fu. 1994. US patent 5,286,486.
- 85. Payne, J. M., M. K. Kennedy, J. B. Randall, H. Meier, H. J. Uick, L. Foncerrada, H. E. Schnepf, G. E. Schwab, and J. Fu. 1997. US patent 5,596,071.
- 86. Payne, J. M., and K. E. Narva. 1994 patent WO 94/16079.
- 87. Payne, J. M., K. E. Narva, K. A. Uyeda, C. J. Stalder, and T. E. Michaels. 1995. US patent 5,436,002.
- 88. Payne, J. M., and A. J. Sick. 1993. US patent 5,246,852.
- 89. Payne, J. M., and A. J. Sick. 1993. US patent 5,188,960.
- 90. Payne, J. M., and A. J. Sick. 1993. US patent 5,206,166.
- 91. Payne, J. M., and A. J. Sick. 1991. US patent 5,039,523.
- 92. Payne, J. M., A. J. Sick, and M. Thompson. 1992. US patent 5,135,867.
- 93. Payne, J. M., G. G. Soares, H. W. Talbot, and T. C. Olson. 1991. US patent 4,990,332.
- 94. Peferoen, M., B. Lambert, and H. Joos. 1990 patent EP 0382990-A1.
- 95. Peferoen, M., B. Lambert, and K. Van Audenhove. 1995. US patent 5466597.
- 96. **Rosso**, M. L., and A. Delecluse. 1997. Contribution of the 65-kilodalton protein encoded by the cloned gene *cry19A* to the mosquitocidal activity of *Bacillus thuringiensis* subsp. *jegathesan*. Appl. Environ. Microbiol. **63**:4449-4455.
- 97. Sanchis, V., D. Lereclus, G. Menou, J. Chaufaux, S. Guo, and M.-M. Lecadet. 1989. Nucleotide sequence and analysis of the N-terminal coding region of the *Spodoptera*active δ-endotoxin gene of *Bacillus thuringiensis aizawai* 7.29. Mol. Microbiol. 3:229-238.

- 98. Sasaki, J., S. Asano, N. Hashimoto, B.-W. Lay, S. Hastowo, H. Bando, and T. lizuka. 1997. Characterization of a *cry2A* gene cloned from an isolate of *Bacillus thuringiensis* serovar *sotto*. Curr. Microbiol. 35:1-8.
- 99. Schnepf, H. E., G. E. Schwab, J. M. Payne, K. E. Narva, and L. Foncerrada. 1992 patent WO 92/19739.
- 100. Schnepf, H. E., H. C. Wong, and H. R. Whiteley. 1985. The amino acid sequence of a crystal protein from *Bacillus thuringiensis* deduced from the DNA base sequence. J. Biol. Chem. 260:6264-6272.
- 101. Sekar, V., D. V. Thompson, M. J. Maroney, R. G. Bookland, and M. J. Adang. 1987. Molecular cloning and characterization of the insecticidal crystal protein gene of *Bacillus* thuringiensis var. tenebrionis. Proc. Natl. Acad. Sci. USA. 84:7036-7040.
- 102. Selvapandiyan, A. 1996. Unpublished observation.
- 103. Sen, K., G. Honda, N. Koyama, M. Nishida, A. Neki, H. Sakai, M. Himeno, and T. Komano. 1988. Cloning and nucleotide sequences of the two 130 kDa insecticidal protein genes of *Bacillus thuringiensis* var. *israelensis*. Agric. Biol. Chem. **52**:873-878.
- 104. Shevelev, A. B., Y. N. Kogan, A. M. Busheva, E. J. Voronina, D. V. Tebrikov, S. I. Novikova, G. G. Chestukhina, V. Kubshinov, E. Pehu, and V. M. Stepanov. 1997. A novel delta-endotoxin gene *cryIM* from *Bacillus thuringiensis* subsp. *wuhanensis*. FEBS Lett. 404:148-152.
- 105. Shevelev, A. B., M. A. Svarinsky, A. I. Karasin, Y. N. Kogan, G. G. Chestukhina, and V. M. Stepanov. 1993. Primary structure of *cryX*, the novel delta-endotoxin-related gene from *Bacillus thuringiensis* spp. *galleriae*. FEBS Letts. **336**:79-82.
- 106. Shibano, Y., A. Yamagata, N. Nakamura, T. Iizuka, H. Sugisaki, and M. Takanami. 1985. Nucleotide sequence coding for the insecticidal fragment of the *Bacillus thuringiensis* crystal protein. Gene. **34**:243-251.
- 107. Shimizu, M., K. Oshie, K. Nakamura, Y. Takada, K. Oeda, and H. Ohkawa. 1988. Cloning and expression in *Escherichia coli* of the 135-kDa insecticidal protein gene from *Bacillus thuringiensis* subsp. *aizawai* IPL7. Agric. Biol. Chem. **52**:1565-1573.
- 108. Shin, B.-S., S.-H. Park, S.-K. Choi, B.-T. Koo, S.-T. Lee, and J.-I. Kim. 1995. Distribution of *cryV*-type insecticidal protein genes in *Bacillus thuringiensis* and cloning of *cryV*-type genes from *Bacillus thuringiensis* subsp. *kurstaki* and *Bacillus thuringiensis* subsp. *entomocidus*. Appl. Environ. Microbiol. 61:2402-2407.
- 109. Sick, A., F. Gaertner, and A. Wong. 1990. Nucleotide sequence of a coleopteran-active toxin gene from a new isolate of *Bacillus thuringiensis* subsp. *tolworthi*. Nucl. Acids Res. 18:1305.
- 110. Sick, A. J., G. E. Schwab, and J. M. Payne. 1994. US patent 5,281,530.
- 111. Silva-Werneck, J. O., M. T. De-Souza, J. M. C. S. Dias, and B. M. Ribeiro. 1998. Unpublished observation.
- 112. Smulevitch, S. V., A. L. Osterman, A. B. Shevelev, S. V. Kaluger, A. I. Karasin, R. M. Kadyrov, O. P. Zagnitko, G. G. Chestukhina, and V. M. Stepanov. 1991. Nucleotide sequence of a novel delta-endotoxin gene *cryIG* of *Bacillus thuringiensis* ssp. *galleriae*. FEBS Letts. 293:25-28.
- 113. Soetaert, P. 1996. Unpublished observation.
- 114. Song, F. P., and J. Zhang. 1998. Unpublished observation.
- 115. Strizhov, N. 1996. Unpublished observation.
- 116. Sun, M. 1997. Unpublished observation.
- 117. Tailor, R., J. Tippett, G. Gibb, S. Pells, D. Pike, L. Jordon, and S. Ely. 1992. Identification and characterization of a novel *Bacillus thuringiensis* delta-endotoxin entomocidal to coleopteran and lepidopteran larvae. Mol. Microbiol. 6:1211-1217.
- 118. **Thiery**, I., A. Delécluse, M. C. Tamayo, and S. Orduz. 1997. Identification of a gene for Cyt1A-like hemolysin from *Bacillus thuringiensis* subsp. *medellin* and expression in a crystal-negative *B. thuringiensis* strain. Appl. Environ. Microbiol. 63:468-473.
- 119. Thorne, L., F. Garduno, T. Thompson, D. Decker, M. A. Zounes, M. Wild, A. M. Walfield, and T. J. Pollock. 1986. Structural similarity between the lepidoptera- and

diptera-specific insecticidal endotoxin genes of *Bacillus thuringiensis* subsp. "kurstaki" and "israelensis". J. Bacteriol. **166**:801-811.

- 120. Tungpradubkul, S., C. Settasatien, and S. Panyim. 1988. The complete nucleotide sequence of a 130 kDa mosquito-larvicidal delta-endotoxin gene of *Bacillus thuringiensis* var. *israelensis*. Nucl. Acids Res. 16:1637-1638.
- 121. Udayasuriyan, V., A. Nakamura, H. Mori, H. Masaki, and T. Uozumi. 1994. Cloning of a new *crylA(a)* gene from *Bacillus thuringiensis* strain FU-2-7 and analysis of chimeric *crylA(a)* proteins for toxicity. Biosci. Biotechnol. Biochem. **58**:830-835.
- 122. Van Mellaert, H., J. Botterman, J. Van Rie, and H. Joos. 1990 patent EP 0400246-A.
- 123. Visser, B., E. Munsterman, A. Stoker, and W. G. Dirkse. 1990. A novel *Bacillus thuringiensis* gene encoding a *Spodoptera* exigua-specific crystal protein. J. Bacteriol. 172:6783-6788.
- 124. Von Tersch, M. A., and J. M. Gonzalez. 1994. US patent 05356623.
- 125. Von Tersch, M. A., H. L. Robbins, C. S. Jany, and T. B. Johnson. 1991. Insecticidal toxins from *Bacillus thuringiensis* subsp. *kenyae*: gene cloning and characterization and comparison with *B. thuringiensis* subsp. *kurstaki cry*IA(c) toxins. Appl. Environ. Microbiol. 57:349-358.
- 126. Waalwijk, C., A. M. Dullemans, M. E. S. vanWorkum, and B. Visser. 1985. Molecular cloning and the nucleotide sequence of the Mr28,000 crystal protein gene of *Bacillus thuringiensis* subsp. *israelensis*. Nucl. Acids Res. 13:8207-8217.
- 127. Wabiko, H., K. C. Raymond, and L. A. Bulla, Jr. 1986. *Bacillus thuringiensis* entomocidal protoxin gene sequence and gene product analysis. DNA. 5:305-314.
- 128. Ward, E. S., and D. J. Ellar. 1986. *Bacillus thuringiensis* var. *israelensis* delta-endotoxin: nucleotide sequence and characterization of the transcripts in *Bacillus thuringiensis* and *Escherichia coli*. J. Mol. Biol. 191:1-11.
- 129. Ward, E. S., and D. J. Ellar. 1987. Nucleotide sequence of a *Bacillus thuringiensis* var. *israelensis* gene encoding a 130 kDa delta-endotoxin. Nucl. Acids Res. 15:7195.
- 130. Wasano, N., and M. Ohba. 1998. Partial nucleotide sequence of the delta-endotoxin gene from the *Bacillus thuringiensis* serovar *japonensis* type strain.
- 131. Widner, W. R., and H. R. Whiteley. 1989. Two highly related insecticidal crystal proteins of *Bacillus thuringiensis* subsp. *kurstaki* possess different host range specificities. J. Bacteriol. 171:965-974.
- 132. Wojciechowska, J. 1999. Unpublished observation.
- 133. Wu, D., X. L. Cao, Y. Y. Bai, and A. I. Aronson. 1991. Sequence of an operon containing a novel δ-endotoxin gene from *Bacillus thuringiensis*. FEMS Microbiol. Lett. 81:31-36.
- 134. Yamamoto, T., I. A. Watkinson, L. Kim, M. V. Sage, R. Stratton, N. Akande, Y. Li, D.-P. Ma, and B. A. Roe. 1988. Nucleotide sequence of the gene coding for a 130-kDa mosquitocidal protein of *Bacillus thuringiensis israelensis*. Gene. 66:107-120.
- 135. Yu, J., and Y. Pang. 1999. Unpublished observation.
- 136. Zhang, J., T. C. Hodgman, L. Krieger, W. Schnetter, and H. U. Schairer. 1997. Cloning and analysis of the first *cry* gene from *Bacillus popilliae*. J. Bacteriol. **179**:4336-4341.
- 137. Zhong, Q., R. Deng, Q. Long, M. Yuan, Y. Pang, and X. Wang. 1998. Unpublished observation.

PESTICIDAL ACTIVITY OF CRY AND CYT PROTEINS

Cry proteins exhibit toxicity to insects and other invertebrates. Typically, a given Cry protein has a fairly narrow range of target organisms against which it is effective. The mode of action of Cry proteins is complex. It is thought to involve solubilization and proteolytic processing in the target organism's gut, binding to receptor molecules in specific gut cells, and insertion into the cell membrane. At some point in this process certain structural rearrangements must occur and oligomers of the protein must form. Eventually, the inserted protein functions as an ion channel, disrupting the electrophysiology of the gut cells. For a Cry protein to function effectively in a given target organism, then, an entire series of events must occur at a rate and frequency above a certain threshold. It can be difficult to predict which organisms might be susceptible to a newly discovered Cry protein. Although numerous exceptions exist, a useful first approximation would be that proteins sharing a primary rank (the Cry1 proteins, for example) are toxic to the same orders of insects or other invertebrates. Proteins sharing the same secondary rank (the Cry1A proteins, for example) are generally toxic to the same families. Finally, proteins sharing the same tertiary rank (such as the Cry1Aa proteins) typically are toxic to the same species. The following table, derived from the Toxin Specificity Database (http://www.glfc.forestry.ca/Bacillus/Web98.adb), primary journal articles, and patent applications is intended to illustrate the activity spectrum for selected toxins. Consult the Toxin Specificity Database for a much more complete, searchable list.

NAME	SOURCE STRAIN	KNOWN TOXICITY
Cry1Aa1	B.t. kurstaki HD-1; B.t. aizawai HD-68	Heliothis virescens, Mamestra brassicae, Pseudoplusia includens (Lepidoptera: Noctuidae); Manduca sexta (Lepidoptera: Sphingidae); Pieris brassicae (Lepidoptera: Pieridae); Bombyx mori (Lepidoptera: Bombycidae); (Lepidoptera: Lymantriidae); Sciropophaga incertulas, Chilo suppressalis, Ostrinia nubilalis (Lepidoptera: Pyralidae); Choristoneura fumiferana (Lepidoptera: Tortricidae); Hyphantria cunea (Lepidoptera: Arctiidae); Plutella xylostella (Lepidoptera: Plutellidae)
Cry1Ab2	B.t. kurstaki HD-1	Lymantria dispar (Lepidoptera: Lymantriidae); Heliothis virescens, Trichoplusia ni (Lepidoptera: Noctuidae); Manduca sexta (Lepidoptera: Sphingidae)
Cry1Ac1	B.t. kurstaki HD-73, B.t. kurstaki HD-244	Bombyx mori (Lepidoptera: Bombycidae); Agrotis segetum, Helicoverpa zea, Heliothis virescens, Mamestra brassicae, Trichoplusia ni, Spodoptera exigua (Lepidoptera: Noctuidae); Ephestia kuehniella, Sciropophaga incertulas, Chilo suppressalis, Ostrinia nubilalis (Lepidoptera: Pyralidae); Manduca sexta (Lepidoptera: Sphingidae); Lymantria dispar (Lepidoptera: Lymantriidae); Pieris brassicae (Lepidoptera: Pieridae)
Cry1Ad1	B.t. aizawai PS81 I	Trichoplusia ni, Spodoptera exigua (Lepidoptera: Noctuidae); Choristoneura fumiferana (Lepidoptera: Tortricidae); Plutella xylostella (Lepidoptera: Plutellidae)
Cry1Ae1	B.t. alesti	Heliothis virescens, Trichoplusia ni (Lepidoptera: Noctuidae)
Cry1Af1	<i>B. thuringiensis</i> NT0423	Reported dual activity against Diptera and Lepidoptera
Cry1Ba1	B. thuringiensis HD- 290-I; B. thuringiensis HD2	Chrysomela scripta (Coleoptera: Chrysomelidae); Manduca sexta (Lepidoptera: Sphingidae); Artogeia rapae (Lepidoptera: Pieridae)
Cry1Bb1	B. thuringiensis EG5847	Spodoptera frugiperda, Pseudoplusia includens, Trichoplusia ni (Lepidoptera: Noctuidae); Plutella xylostella (Lepidoptera: Plutellidae); Lymantria dispar (Lepidoptera: Lymantriidae); Ostrinia nubilalis (Lepidoptera: Pyralidae);
Cry1Be1	<i>B. thuringiensis</i> 158C2	Strain of origin active against lepidopterans
Cry1Ca1	B.t. entomocidus 60.5, B.t. aizawai HD-229	Sciropophaga incertulas, Chilo suppressalis Lepidoptera: Pyralidae); Heliothis virescens, Spodoptera exigua, Spodoptera frugiperda, Trichoplusia ni (Lepidoptera: Noctuidae); Pieris brassicae (Lepidoptera: Pieridae)
Cry1Cb1 Cry1Da1	B.t. galleriae HD-29 B.t. aizawai HD-68	Spodoptera exigua, Trichoplusia ni (Lepidoptera: Noctuidae) Plutella xylostella (Lepidoptera: Plutellidae); Choristoneura fumiferana (Lepidoptera: Tortricidae); Bombyx mori (Lepidoptera: Bombycidae); Lymantria dispar, Orgyia leucostigma (Lepidoptera: Lymantriidae); Manduca sexta (Lepidoptera: Sphingidae); Malacosoma disstria (Lepidoptera: Lasiocampidae); Lambdina fiscellaria fiscellaria (Lepidoptera: Geometridae); Spodoptera frugiperda (Lepidoptera: Noctuidae)

NAME	SOURCE STRAIN	KNOWN TOXICITY
Cry1Ea1	B.t. darmstadiensis	Spodoptera littoralis, Spodoptera exempta (Lepidoptera: Noctuidae); Manduca
	HD-146	sexta (Lepidoptera: Sphingidae)
Cry1Eb1	B.t. aizawai	Source strain is toxic to <i>Trichoplusia ni</i> , <i>Spodoptera exigua</i> (Lepidoptera:
C 4 E 4		Noctuidae); Plutella xylostella (Lepidoptera: Plutellidae)
Cry1Fa1	B.t. aizawai EG6346	Plutella xylostella (Lepidoptera: Plutellidae); Heliothis virescens, Spodoptera
		exigua, Spodoptera littoralis (Lepidoptera: Noctuidae); Ostrinia nubilalis (Lepidoptera: Pyralidae)
Cry1la1	B.t. kurstaki INA-02,	Spodoptera littoralis (Lepidoptera: Noctuidae); Bombyx mori (Lepidoptera:
Cryman	4835	Bombycidae); Plutella xylostella (Lepidoptera: Plutellidae); Ostrinia nubilalis
	1000	(Lepidoptera: Pyralidae); Leptinotarsa decemlineata (Coleoptera: Chrysomelidae)
Cry1lb1	B.t. entomocidus	Plutella xylostella (Lepidoptera: Plutellidae)
	BP465	
Cry1Ja1	B. thuringiensis	Helicoverpa zea, Heliothis virescens, Pseudoplusia includens, Spodoptera exigua,
	EG5847	Spodoptera frugiperda, Trichoplusia ni (Lepidoptera: Noctuidae); Plutella
c		xylostella (Lepidoptera: Plutellidae)
Cry1Jb1	B. thuringiensis	Pseudoplusia includens, Trichoplusia ni (Lepidoptera: Noctuidae); Ostrinia
Cmulkal	EG5092 B. t. marricani BE100	nubilalis (Lepidoptera: Pyralidae); <i>Plutella xylostella</i> (Lepidoptera: Plutellidae)
Cry1Ka1 Cry2Aa1	B.t. morrisoni BF190 B.t. kurstaki HD-1,	Artogeia rapae (Lepidoptera: Pieridae) Sciropophaga incertulas, Chilo suppressalis, Ostrinia nubilalis (Lepidoptera:
CIYZAd I	HD-263	Pyralidae); Lymantria dispar (Lepidoptera: Lymantriidae); Helicoverpa armigera,
	110 205	Heliothis virescens, Trichoplusia ni (Lepidoptera: Noctuidae); Aedes aegypti
		(Diptera: Cuclidae)
Cry2Ab1	B.t. kurstaki HD1	Manduca sexta (Lepidoptera: Sphingidae)
Cry2Ac1	B. thuringiensis S1	Heliothis virescens, Trichoplusia ni (Lepidoptera: Noctuidae); Manduca sexta
		(Lepidoptera: Sphingidae)
Cry3Aa1	B.t. san diego, B.t.	Haltica tombacina, Leptinotarsa decemlineata, Pyrrhalta luteola (Coleoptera:
	tenebrionis	Chrysomelidae); Hypera brunneipennis, Otiorhynchus sulcatus, Anthonomus
		grandis (Coleoptera: Curculionidae); Tribolium castaneum, Tenebrio molitor
Cry3Ba1	B.t. tolworthi	(Coleoptera: Tenebrionidae) Leptinotarsa decemIineata (Coleoptera: Chrysomelidae)
CIYSDai	EG2838	Leptinotal sa decemmeata (coleoptera. chi ysometidae)
Cry3Bb1	B.t. kumamotoensis	Leptinotarsa decemlineata (Coleoptera: Chrysomelidae)
	EG4961	
Cry3Ca1	B.t. san diego	Pyrrhalta luteola (Coleoptera: Chrysomelidae)
Cry4Aa1	B.t. israelensis 4Q2-	Anopheles stephensi, Aedes aegypti, Culex pipiens (Diptera: Cuclidae)
	72	
Cry4Ba1	B.t. israelensis 4Q2-	Aedes aegypti (Diptera: Cuclidae)
Cry5Aa1	72 B. thuringiensis	Capportabelitic alogons, Dratulanshus con (plant parasitic pomatodos)
Сгуздат	PS17A	Caenorhabditis elegens, Pratylenchus spp. (plant parasitic nematodes)
Cry5Ab1	B. thuringiensis PS7	Fasciola hepatica (liver fluke); Caenorhabditis elegens, Pratylenchus spp. (plant
CIYSADI	D. than ngichisis i Si	parasitic nematodes)
Cry6Aa1	B. thuringiensis	Pratylenchus spp., Panagrellus redivivus (plant pathogenic nematodes)
, , , , , , , , , , , , , , , , , , ,	PS52A1	······································
Cry6Ba1	B. thuringiensis	Pratylenchus spp. (plant pathogenic nematode)
	PS52A1	
Cry7Aa1	B. thuringiensis	Leptinotarsa decemIineata (Coleoptera: Chrysomelidae)
c o i i	BTS137J	
Cry8Aa1	B.t. kumamotoensis	Leptinotarsa decemlineata (Coleoptera: Chrysomelidae)
Crov0Pa1	PS50C	Catinicana (Calcontera, Carabasidae)
Cry8Ba1	B.t. kumamotoensis PS50C	Cotinis spp. (Coleoptera: Scarabaeidae)
Cry8Ca1	B.t. japonensis	Anomala cuprea (Coleoptera: Scarabaeidae)
Cryocar	strain Buibui	Anomala capi ea (coleoptera. scalabaeldae)
Cry9Aa1	B.t. galleriae 11-67	Galleria mellonella (Lepidoptera: Pyralidae)
Cry9Ca1	B.t. tolworthi H9	Agrotis segetum, Helicoverpa armigera, Heliothis virescens, Mamestra brassicae,
		Spodoptera exigua, Spodoptera littoralis (Lepidoptera: Noctuidae); Manduca sexta
		(Lepidoptera: Sphingidae); Ostrinia nubilalis (Lepidoptera: Pyralidae); Plutella
		xylostella (Lepidoptera: Plutellidae); Bombyx mori (Lepidoptera: Bombycidae);
		Choristoneura fumiferana (Lepidoptera: Tortricidae)
Cry10Aa1	B.t. israelensis	Aedes aegypti (Diptera: Cuclidae)
Cn/114-1	ONR60A	Anonholos stonhonsi. Aodos acquinti. Culov ninions (Dintora: Cuslidae)
Cry11Aa1	B.t. israelensis HD- 567	Anopheles stephensi, Aedes aegypti, Culex pipiens (Diptera: Cuclidae)
Cry11Ba1	B.t. jegathesan 367	Anopheles stephensi, Aedes aegypti, Culex pipiens (Diptera: Cuclidae)
Cry11Bb1	B.t. medellin	Anopheles albimanus, Aedes aegypti, Culex piperis (Diptera: Cuclidae) Anopheles albimanus, Aedes aegypti, Culex quinquefasciatus (Diptera: Cuclidae)
,		,,

NAME	SOURCE STRAIN	KNOWN TOXICITY
Cry12Aa1	<i>B. thuringiensis</i> PS33F2	Pratylenchus spp. (plant pathogenic nematode)
Cry13Aa1	B. thuringiensis PS63B	nematodes
Crv14Aa1	B.t. sotto PS80JJ1	Diabrotica (Coleoptera:); nematodes
Cry15Aa1	B.t. thompsoni HD- 542	Manduca sexta (Lepidoptera: Sphingidae)
Cry16Aa1	Clostridium bifermentans malaysia CH18	Anopheles stephensi, Aedes aegypti, Culex pipiens (Diptera: Cuclidae)
Cry19Aa1	B.t. jegethesan	Anopheles stephensi, Culex pipiens (Diptera: Cuclidae)
Cry20Aa1	B.t. fukuokaensis	Aedes aegypti (Diptera: Cuclidae)
Cry21Aa1	B.t. higo	Culex pipiens molestus (Diptera: Cuclidae)
Cry22Aa1	-	hymenopterans
Cry23Aa1		Tribolium castaneum, (Coleoptera: Tenebrionidae); Popillia japonica (Coleoptera: Scarabaeidae)
Cyt1Aa1	B.t. israelensis IPS82	Anopheles stephensi, Aedes aegypti, Culex pipiens (Diptera: Cuclidae)
Cyt1Ab1	<i>B.t. medellin</i> 163- 131	Anopheles stephensi, Aedes aegypti, Culex pipiens (Diptera: Cuclidae)
Cyt2Aa1 Cyt2Bb1	B.t. kyushuensis	Anopheles stephensi, Aedes aegypti, Culex pipiens (Diptera: Cuclidae) Aedes aegypti (Diptera: Cuclidae)

Phylogram of Cry and Cyt Holotype Sequences

THE REVIEW LITERATURE FOR B. THURINGIENSIS

Bacillus thuringiensis is the subject of intensive research. Nearly 4000 primary research articles covering some aspect of Bt or Cry protein biology will be published in *this decade alone*. Fortunately, many of these topics have been reviewed in recent years. The following list of reviews is by no means complete. Perhaps it will suffice, however, to provide researchers new to the field with an entry into the fascinating *Bacillus thuringiensis* research literature. The list is organized by the kinds of questions raised in each review.

Where can I find a thorough, general review of *Bacillus thuringiensis* and Cry proteins?

Schnepf, E., N. Crickmore, J. Van Rie, D. Lereclus, J. Baum, J. Feitelson, D. R. Zeigler, D. H. Dean. 1998. *Bacillus thuringiensis* and its pesticidal crystal proteins. Microbiol. Mol. Biol. Rev. 62:775-806.

Kumar, P. A., R. P. Sharma, V. S. Malik. 1996. The insecticidal proteins of *Bacillus thuringiensis*. Adv. Appl. Microbiol. **42**:1-43.

Aronson, I. 1993. Insecticidal toxins. pp. 953-963 in: *Bacillus subtilis* and Other Gram-Positive Bacteria. Biochemistry, Physiology, and Molecular Genetics. (Sonenshein, A. L., J. A. Hoch, and R. Losick, eds.) American Society for Microbiology, Washington, D. C.

How are Cry and Cyt proteins named?

N. Crickmore, D. R. Zeigler, J. Feitelson, Schnepf, E., J. Van Rie, D. Lereclus, J. Baum, D. H. Dean. 1998. Revision of the nomenclature for the *Bacillus thuringiensis* pesticidal crystal proteins. Microbiol. Mol. Biol. Rev. **62**:807-813.

What are the phylogenetic relationships found among the Cry proteins?

Bravo, A. 1997. Phylogenetic relationships of *Bacillus thuringiensis* delta-endotoxin family proteins and their functional domains. J. Bacteriol. **179**:2793-801.

How is the expression of cry genes regulated in Bacillus thuringiensis?

Agaisse, H., D. Lereclus. 1995. How does *Bacillus thuringiensis* produce so much insecticidal crystal protein? J. Bacteriol. **177**:6027-6032.

What role might transposable elements play in cry gene biology?

Mahillon, J., R. Rezsohazy, B. Hallet, J. Delcour. 1994. IS231 and other *Bacillus thuringiensis* transposable elements: a review. Genetica **93**:13-26.

How might Cry proteins contribute to the fitness of Bacillus thuringiensis?

Aronson, A. I. 1993. The two faces of *Bacillus thuringiensis*: insecticidal proteins and post-exponential survival. Mol. Microbiol. **7**:489-496.

What is the mode of action of Cry proteins?

Rajamohan, F., M. K. Lee, D. H. Dean. 1998. *Bacillus thuringiensis* insecticidal proteins: molecular mode of action. Progress in Nucleic Acid Research and Molecular Biology **60**:1-27.

Dean, D H., F.Rajamohan, M. K.Lee, S. J.Wu, X. J.Chen, E.Alcantara, S. R.Hussain. 1996. Probing the mechanism of action of *Bacillus thuringiensis* insecticidal proteins by sitedirected mutagenesis—a minireview. Gene **179**:111-117.

What is the relationship between structure and function of Cry proteins?

Thompson, M. A., H. E. Schnepf, J. S. Feitelson. 1995. Structure, function and engineering of *Bacillus thuringiensis* toxins. Genet. Engineer. 17:99-117.

How do media and fermentation conditions affect Cry protein synthesis in *Bacillus thuringiensis*?

Avignone-Rossa, C., and C. F. Mignone. 1995. *Bacillus thuringiensis* growth and toxicity. Basic and applied considerations. Mol. Biotechnol. 4:55-71.

Yang, X. M., and S. S. Wang. 1998. Development of *Bacillus thuringiensis* fermentation and process control from a practical perspective. Biotechnol. Appl. Biochem. 28:95-8.

How are plants engineered to express Cry proteins?

Estruch, J. J., N. B. Carozzi, N. Desai, N. B. Duck, G. W. Warren, M. G. Koziel. 1997. Transgenic plants: an emerging approach to pest control. Nature Biotechnol. **15**:137-141.

How do Bacillus thuringienis subsp. israelensis products contribute to the control of mosquitoes and other biting flies?

Priest, F. G. 1992. Biological control of mosquitoes and other biting flies by *Bacillus* sphaericus and *Bacillus thuringiensis*. J. Appl. Bacteriol. **72**:357-369.

How might insect resistance to Cry proteins in transgenic plants be delayed or prevented?

McGaughey, W. H., F. Gould, W. Gelernter. 1998. Bt resistance management. Nature Biotechnol. 16:144-146.

Roush, R. T., A. M. Shelton. 1997. Assessing the odds: the emergence of resistance to Bt transgenic plants. Nature Biotechnol. **15**: 816-817.

What are the public health considerations for use of Bacillus thuringiensis and related organisms?

Drobniewski, F. A. 1994. The safety of Bacillus species as insect vector control agents. J. Appl. Bacteriol. 76:101-109.

B. CEREUS & B. THURINGIENSIS-THE SPECIES QUESTION

The species status of members of the *B. cereus* group has been a persistent question among bacterial taxonomists. The data summarized below suggest strongly that these organisms are as closely related genetically as are members of other recognized bacterial species. Further, no physiological or molecular character has been discovered that correlates with the presence of parasporal crystals, the classical definition of *B. thuringiensis*, other than the presence of the *cry* genes themselves. A model in which *B. cereus*-like organisms exchange genetic material, especially plasmid borne genes, could easily account for the occurrence of crystal-producing strains in nature. It is perhaps inconvenient that highly beneficial organisms and pathogenic ones co-exist under the same taxonomic identifier. Yet the safe use of Bt products for over three decades argues strongly that many *B. cereus*-like organisms can indeed be harnessed for applications in industry and agriculture. If so, it may be more productive to work towards eliminating a few hazardous genes than to regard an entire species as somehow unsuitable for use.

Nur	Numbers Analyzed ^a		ed ^a	Method	Conclusions	Ref
Bc	Bt	Bm	Ва	-		
44	15	13	23	30 morphological and physiological characters	"We are bound by our data" that there is no "basis for separation" into more than one species	6
35	137	-	-	99 phenotypic traits	"Strains of Bt were indistinguishable from <i>B. cereus</i> , except for their ability to produce parasporal crystals."	2
39	12	16	-	329 physiological tests	Strains clustered in one main group, distinct from the other <i>Bacillus</i> species tested	7
149	55	25	37	API test strips	"The results suggest that <i>B. mycoides</i> and Bt should be considered as varieties of <i>B. cereus.</i> "	10
17	35	4	-	118 morphological and physiological tests	"The numerical phenetic data underline the close relationship between <i>B. cereus</i> and <i>B. thuringiensis.</i> "	12
33	9	-	-	Fatty acid analysis	All strains tested clustered together, distinct from the other <i>Bacillus</i> species tested	8
24	12	-	-	<i>Notl</i> profiles, multilocus enzyme electrophoresis	"On the basis of these resultswe conclude that strains typed as <i>B. cereus</i> and Bt belong to the same species."	4
1	2	1	78	Amplification fragment length polymorphism	"AFLP similarities are consistent withclose relationships" among these strains.	9
4	3	-	-	Physical mapping of chromosomes	Some <i>B. cereus</i> genomes are more similar to Bt genomes than to those of other <i>B. cereus</i> strains.	5
3	3	-	3	Phospholipid analysis	The three "species" tested clustered into a "B. cereus group" readily distinguishable from B. subtilis	3
2	6	1	2	DNA reassociation	"The available DNA reassociation data indicate a single species."	11
2	1	1	1	16S rRNA sequencing	"These 'species' form a genealogically tight group" comparable to "other gram-positive species."	1

^aSpecies abbreviations: Bc, B. cereus; Bt, B. thuringiensis; Bm, B. mycoides; Ba, B. anthracis

REFERENCES

- 1. Ash, C., J. A. E. Farrow, M. Darsh, E. Stackebrandt, and M. D. Collins. 1991. Int. J. System. Bacteriol. 41:343-346.
- 2. Baumann, L., K. Okamoto, B. M. Unterman, M. J. Lynch, and P. Baumann. 1984. J. Invertebr. Pathol. 44:329-341.
- 3. Black, G. E., A. P. Snyder, and K. S. Heroux. 1997. J. Microbiol. Meth. 28:187-199.
- 4. Carlson, C. R., D. A. Caugant, and A.-B. Kolstø. 1994. Appl. Environ. Microbiol. 60:1719-1725.
- 5. Carlson, C. R., T. Johansen, M.-M. Lecadet, and A.-B. Kolstø. 1996. Microbiol. 142:1625-1634.
- 6. Gordon, R. E., W. C. Haynes, and C. H.-N. Pang. 1973. The genus *Bacillus*. U. S. Department of Agriculture,
- Washington, D. C.
 Kämpfer, P. 1991. J. Gen. Appl. Microbiol. 37:225-247.
- Kämpfer, P. 1991. J. Gen. Appl. Microbiol. 37.225-247
 Kämpfer, P. 1994. System. Appl. Microbiol. 17:86-98.
- 9. Keim, P., A. Kalif, J. Schupp, K. Hill, S. E. Travis, K. Richmond, D. M. Adair, M. Hugh-Jones, C. R. Kuske, and P. Jackson. 1997. J. Bacteriol. 179:818-824.
- 10. Logan, N. A., and R. C. W. Berkley. 1984. J. Gen. Microbiol. 130:1871-1882.
- 11. **Priest**, F. G. 1989. p. 33-57. *In* R. C. W. Berekely and M. Goodfellow (ed.), The Aerobic Endospore-Forming Bacteria: Classification and Identification. Academic Press, London.
- 12. Priest, F. G., M. Goodfellow, and C. Todd. 1988. J. Gen. Microbiol. 134:1847-1882.

GENERAL INDEX OF STRAINS, PHAGE AND PLASMIDS

	Dece	
Original Code	BGSC	Page
1012M15	1A748	23
102 103	4M2 4M1	7 7
117-72	4W1	9
140	4T1	8
143	4C3	5
1715	4A6	5
2	4D2	5
2-124	4E1	6
273B	4AF1	10
3	4D3	5
3397	4BN1	13
367	4CF1	15
3-71	4W1	9
4432	4D20	6
4Q2-72	4Q5	8
4Q2-72 str azi	4Q6	8
4Q2-81	4Q7	8
4Q2-81 str	4Q8	8
6A3 StrepR	6A4	20
7304 74-F-6-18	4F4 4U1	6 8
74-F-0-16 78-FS-29-17	401 4V1	o 9
84 F 58.20	4AE1	9
A20	4BV1	14
A39	4BL1	13
AP77BX17	4D4	5
ATCC 14579	6A5	20
B1715V1	1P29	21
B-30-2	4N1	7
Bace-11	1P25	21
Bam35-c	1P26	21
Bam35-v	1P27	21
Bastille	1P30	21
Bat 1	1P31	21
Bat 10	1P34	21
Bat 11	1P35	21
Bat 18	1P36	21 21
Bat 5 Bat 7	1P32 1P33	21
Bt1	4A7	5
Bt131	4A8	5
Bt1627	4A9	5
CCEB206	4A2	5
CCEB457	4A5	5
CCEB460	4B1	5
CCEB463	4C1	5
CCEB566	4H1	6
CP-54Ber	1P37	21
CRY(-)B	4D11	5
Dch-T	4H1	6
DD-742	4J1	7
DP7	1P38	21
EA 11996	4CB1	15
EA 14696	4CE1	15
EA 15196	4CD1	15
EA 34594 EA 40694	4BQ1	13 14
EA 40694 GM33	4BS1 4AJ1	14
GM53 GM54	4AJ1 4AC1	9
GP-10	1P39	21
01 10	11 37	<u> </u>

Original Code	BGSC	Page
GP11	6E2	20
GP7	6E1	20
HD(CRY-1)	4D7	5
HD1	4D1	5
HD1	4D6	5
HD1	4D20	6
HD1(CRY-6)	4D8	5
HD1(CRY-7)	4D9	5
HD1(CRY-8)	4D10	5 7
HD10	4l1	
HD106	4E1	6 7
HD109 HD11	4I5 4J4	7
HD112	4J4 4J1	7
HD12	451 4K1	7
HD120	4A4	
HD125	4L1	5 7
HD123	4J3	7
HD136	4F1	6
HD137	4J2	7
HD137	4J5	7
HD14	4A5	5
HD146	4M1	7
HD146	4M3	7
HD16	4C1	5
HD161	4G3	6
HD164	4D5	5
HD168	4G6	6
HD19	4B1	5
HD198	412	7
HD199	4M2	7
HD2	4A3	5 7
HD201	4N1	
HD210	4G2	6
HD224	4H2	6
HD231	4D14	6
HD232	4D15	6
HD24	4A2	5
HD243 HD263	4D16 4D12	6 5
HD270	4D12 4D19	6
HD270 HD278	4619 4F2	6
HD278 HD29	4G5	6
HD293	4F3	6
HD275	4B2	5
HD30	4H1	6
HD301	4L2	7
HD305	4G4	6
HD320	413	7
HD395	4P1	8
HD4	4C3	5
HD500	4Q2	8
HD501	4Z1	9
HD516	4S3	8
HD518	4K3	7
HD521	4S2	8
HD525	4T1	8
HD537	4L3	7
HD541	4U1	9
HD541	4U1	9
HD542	401	8

Original Code	BGSC	Page
HD560	4F4	6
HD567	4Q1	8
HD6	4E4	6
HD7	4E2	6
HD72	4C2	5
HD73	4D4	5
HD8	4G1	6
HD867 HD867	4W1 4W1	9 9
HD868	4001 4Y1	9
HD88	4D17	6
HD89	4D18	6
HD9	414	7
HDB-2	4A4	5
HDB-20	4J3	7
HDB-23	4F1	6
HDB-24	4J2	7
HDB-24	4J5	7
HDB-28	4L2	7
HDB-34	4G4	6
HDB-8	4L1	7
HL1	4AL1	10
HL175	4BP1	13
HL47	4AH1	10
HL51	4AK1	10
HL94	4CA1	15
HZ39-04	4BZ1	14
IPS 70	4Q3	8
IS720	4X1	9
JC 51	4BH1	13
L60	4BW1	14
mor1 MW10	1P40 1A751	21 23
NA210	4BU1	23 14
NA69	4B01 4BM1	14
NARC Bt17	4CC1	15
NRRL-569	6A3	20
NRRL-B4039	4A1	5
NXP15-04	4BX1	14
Oats 43	4R1	8
ONR60A	4Q1	8
P400	1P42	21
pAMB22	ECE50	24
pBC16	1E9	23
pBC16-1	1E10	23
pBS42	ECE10	24
Pbt 23	4BR1	14
Pbt 53	4BY1	14
pC194	4D21	6
pC194	1E17	23
pDG1513	ECE99	24
pDG1514	ECE100	24
pDG1515	ECE98	24
pDG1726	ECE101	24
pDG1727	ECE102	24
pDG641	ECE90	24
pDG646	ECE91	24
	ECE92	24
pDG647		
pDG647 PDG780	ECE93	24
	ECE93 ECE96 ECE94	24 24 24