News


Strain Database is Now Updated!

Over the weekend we completed a bulk update of our online database. Included are each strain in the BKE knockout library, the CRISPRi knockdown library, the Bacillus subtilis gene expression toolbox, and many more. You should have a greatly increased ability to locate strains and plasmids using our online search engine.

You can enter string of three or more characters into the search box and find strains by their BGSC Code, Original Code, genotype, published reference, and in some cases a GenBank accession ID (we are working to update that last field).

For example: suppose you need a knockout of the B. subtilis xpaC gene. Simply enter xpaC in the search box, press enter, and you will discover that a knockout is available in strain BKE00250. Or suppose you are looking at a 1999 publication by Levin et al., Identification and characterization of a negative regulator of FtsZ ring formation in Bacillus subtilis. You could enter a phrase from the title (FtsZ ring formation) or the PMID for the article (10449747) and discover that we have two of the strains used in this research. Or suppose a BLAST search turns up a sequenced strain with GenBank accession number CP002905. Enter that number in the box, and you will discover we have the strain. Do we have the common lab strain PY79? Enter that name in the box, press enter, and you\'ll find that the answer is yes!

Of course we are always happy to answer inquiries about our holdings or to brainstorm with you about strains or plasmids that might work for your project. Write or call anytime!


Congratulations to IGEM 2016 Medalists!

We at the BGSC view supporting STEM education as one of our most important roles. For this reason I want to take a moment to congratulate two gold medalists at the 2016 iGEM competition. If you are not familiar with iGEM (International Genetically Engineered Machine), you should be! This year, over 5000 students in 42 nations participated at the high school, undergraduate, and overgraduate levels. The competition culminated in a jamboree held October 27-31 in Boson, Massachusetts, where over 3000 gathered to share and celebrate their achievements. The BGSC is proud to have supplied strains and advice to two gold medalists. (Please let me know if I am forgetting anyone!) Team Freiburg explored the use of Bacillus subtilis spore display for the targeted delivery of therapeutic drugs, with a test case of immune suppression therapy for ulcerative colitis. For more on their work, see their project website. Team UC Davis asked whether B. subtilis could be engineered to produce natural food colorants. Their proof of concept experiments suggested that cyanobacterial protein pigments could potentially replace Blue dye #1, or Brilliant Blue. For details, see the project website. A shout out to both teams! There are still plenty of Bacillus-related project for future IGEM competitions, and the BGSC is here to help.


Gene Expression Toolbox for B. subtilis

Sarah Guiziou, from the Jerome Bonnet lab at the University of Montpellier, has graciously donated a large set of plasmids and strains comprising a toolkit allowing tunable gene expression in Bacillus subtilis. The amyE integration vectors in the set contain various arrangements of natural promoters, optimized RBS sequences, and protein degradation tags. By fusing the constructs to sfGFP reporters, Guiziou et al. achieved a range of expression corresponding to an average number of GFP molecules per cell varying from 15 to 270000, a span of more than five orders of magnitude. (Some of the higher expression levels result in B. subtilis constructs that look distinctly bright yellow-green under ordinary room lighting!) A complete listing of the plasmids and B. subtilis strains in the set are beyond the scope of this news item, but I encourage you to read the paper. Supplementary data file 1, an Excel spreadsheet detailing expression levels, is especially helpful. We thank Guizhiou and colleagues for these valuable tools.


A Safe Simulant for Bacillus anthracis

Safe simulants that closely mimic the select agent Bacillus anthracis are needed both for laboratory and field studies. B. anthracis belongs to the Bacillus cereus group (BCG) of species. Members of the BCG are nearly identical is cell and spore morphology due to highly similar genome sequence and content. They differ primarily in toxins and virulence factors, many of which are encoded by megaplasmids that differ among isolates. B. thuringiensis (Bt) likewise belongs to the BCG. Some naturally insecticidal Bt strains have been safely used in agriculture for over half a century. Non-insecticidal derivatives of standard Bt strains would seem to make ideal simulants for B. anthracis. For this reason, Alistair Bishop and colleagues at the Defence Science and Technology Laboratory, Salisbury, Wiltshire, UK, have developed plasmid-cured derivatives of Bt kurstaki strain HD1. One of them, HD-1 Cry-, has been demonstrated to be particularly useful in studies of spore aerisolization, dispersal, and decontamination. We thank Dr. Bishop for depositing B. thuringiensis HD-1 Cry- in the BGSC. It is available as BGSC 4D24.